
Python cookbook(数据结构与算法)找出序列中出现次数最多的元素算法示例
本文实例讲述了Python找出序列中出现次数最多的元素。分享给大家供大家参考,具体如下:
问题:找出一个元素序列中出现次数最多的元素是什么
解决方案:collections模块中的Counter类正是为此类问题所设计的。它的一个非常方便的most_common()方法直接告诉你答案。
# Determine the most common words in a list
words = [
'look', 'into', 'my', 'eyes', 'look', 'into', 'my', 'eyes',
'the', 'eyes', 'the', 'eyes', 'the', 'eyes', 'not', 'around', 'the',
'eyes', "don't", 'look', 'around', 'the', 'eyes', 'look', 'into',
'my', 'eyes', "you're", 'under'
]
from collections import Counter
word_counts = Counter(words)
top_three = word_counts.most_common(3)
print(top_three)
# outputs [('eyes', 8), ('the', 5), ('look', 4)]
# Example of merging in more words
morewords = ['why','are','you','not','looking','in','my','eyes']
word_counts.update(morewords) #使用update()增加计数
print(word_counts.most_common(3))
>>> ================================ RESTART ================================
>>>
[('eyes', 8), ('the', 5), ('look', 4)]
[('eyes', 9), ('the', 5), ('my', 4)]
>>>
在底层实现中,Counter是一个字典,在元素和它们出现的次数间做了映射。
>>> word_counts
Counter({'eyes': 9, 'the': 5, 'my': 4, 'look': 4, 'into': 3, 'around': 2, 'not': 2, "don't": 1, 'under': 1, 'are': 1, 'looking': 1, "you're": 1, 'you': 1, 'why': 1, 'in': 1})
>>> word_counts.most_common(3) #top_three
[('eyes', 9), ('the', 5), ('my', 4)]
>>> word_counts['not']
2
>>> word_counts['eyes']
9
>>> word_counts['eyes']+1
10
>>> word_counts
Counter({'eyes': 9, 'the': 5, 'my': 4, 'look': 4, 'into': 3, 'around': 2, 'not': 2, "don't": 1, 'under': 1, 'are': 1, 'looking': 1, "you're": 1, 'you': 1, 'why': 1, 'in': 1})
>>> word_counts['eyes']=word_counts['eyes']+1 #手动增加元素计数
>>> word_counts
Counter({'eyes': 10, 'the': 5, 'my': 4, 'look': 4, 'into': 3, 'around': 2, 'not': 2, "don't": 1, 'under': 1, 'are': 1, 'looking': 1, "you're": 1, 'you': 1, 'why': 1, 'in': 1})
>>>
增加元素出现次数可以通过手动进行增加,也可以借助update()方法;
另外,Counter对象另一个特性是它们可以同各种数学运算操作结合起来使用:
>>> a=Counter(words)
>>> a
Counter({'eyes': 8, 'the': 5, 'look': 4, 'my': 3, 'into': 3, 'around': 2, 'under': 1, "you're": 1, 'not': 1, "don't": 1})
>>> b=Counter(morewords)
>>> b
Counter({'not': 1, 'my': 1, 'in': 1, 'you': 1, 'looking': 1, 'are': 1, 'eyes': 1, 'why': 1})
>>> c=a+b
>>> c
Counter({'eyes': 9, 'the': 5, 'my': 4, 'look': 4, 'into': 3, 'around': 2, 'not': 2, "don't": 1, 'under': 1, 'are': 1, 'looking': 1, "you're": 1, 'you': 1, 'in': 1, 'why': 1})
>>> # substract counts
>>> d=a-b
>>> d
Counter({'eyes': 7, 'the': 5, 'look': 4, 'into': 3, 'my': 2, 'around': 2, 'under': 1, "you're": 1, "don't": 1})
>>>
当面对任何需要对数据制表或计数的问题时,Counter对象都是你手边的得力工具。比起利用字典自己手写算法,更应采用该方式完成任务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10