大数据如何助教育更加公平优质
李克强总理在今年的政府工作报告中指出:“实施大数据发展行动,加强新一代人工智能研发应用,在医疗、养老、教育、文化、体育等多领域推进‘互联网+’。”当前,发展教育大数据已成为推进我国当前教育领域深化改革和创新发展的战略选择。
党的十九大报告提出,努力让每个孩子都能享有公平而有质量的教育。在教育领域实施大数据发展行动中,好的教育大数据怎样才能挖掘出来,又该进行怎样的分析处理?大数据怎样为教育助力使其更加公平优质?对此,记者对相关专家和从业人员进行了深入采访。
访谈嘉宾:
戚万学 曲阜师范大学党委书记、中国教育大数据研究院院长
甘健侯 云南师范大学民族教育信息化教育部重点实验室常务副主任
方海光 首都师范大学教育技术系教授、远程教育研究所所长
李 超 学堂在线总裁
好的教育大数据怎样才能挖掘出来
记者:当前,“大数据”成了一个时髦名词。好的教育大数据是什么样?教育数据数量越多越好吗?
戚万学:大数据之“大”,我们一般理解为“数量”规模之大,通常数据样本量越大,越有利于对数据进行多维的聚类、聚合、聚集分析,更有利于“扫描”和“透视”看似毫无价值、毫无关联数据之中的相关性、逻辑性直至规律性,从而可以进行评价和趋势预测。大数据之“大”,还有一种理解是处理技术的“大”。对于教育大数据而言,需要数据的不断累积和增多,同时也需要相应大数据挖掘分析技术不断提高。教育大数据的价值在于帮助决策,一般而言,好的教育大数据要具备精确、完整、可靠性、视觉化呈现、存取性高等特征。
甘健侯:教育大数据之“大”并非只是数量之大,更为强调的是数据蕴含的“价值”之大。实质上,教育大数据并不是越多越好。对于数据科学家来说,重要的不是得到最多的数据,而是看通过哪些数据可以得出真正有价值的结果。教育大数据大致分为教学资源类大数据、教育教学管理大数据、教与学行为大数据、教育教学评估大数据四类。教育大数据并非包括所有数据,因为教育活动过程中也会产生大量无意义的“噪声”数据,需要根据教育的应用目的进行数据过滤和“清洗”,为后期深度挖掘和分析做准备。因此,好的教育大数据一定是科学、客观、准确、有用的,要把数据与人的差异化有机结合起来。
方海光:教育大数据并非越多越好,教育大数据要能服务教育发展、具有教育目的性,而非盲目地囊括一切数据。教育大数据是以业务应用导向为评判标准的,即应用是检验教育大数据的唯一标准。好的教育大数据可以在提升教育质量、促进教育公平、实现个性化学习、优化教育资源配置、辅助教育科学决策等方面发挥重要作用。
记者:教育大数据丰富多样、种类繁多,在海量的教育数据中,怎样挖掘出好的教育大数据?
戚万学:教育过程中每分每秒都在产生大量丰富、复杂且多样的信息,这些信息必须经过深入的挖掘才能转化成可以运用的教育数据。如何挖掘教育大数据一直是摆在教育研究者与政府面前的重要课题,也是一个难题。好的教育大数据是凭借数据挖掘者敏锐的洞察力与先进的挖掘技术来获得的。好的教育大数据必须有好的理念、好的问题意识、有趣的研究设计,然后才是好的挖掘技术。在数据挖掘过程中,应该避免唯技术化和工具化倾向。
李超:大数据挖掘不能离开教育实践,无论是在线教育还是课堂教学,我们都不能为了抓数据而去抓数据,而要从贴近教师的教学需要、满足学生的学习需要出发,真正以学习者为中心去获取大数据。非结构化的教育数据如图片文本,需要通过充分利用好现在的信息技术手段,通过人工智能、模式分析、行为分析的了解和认知科学的发展、教育技术的最新理念,把它们转换成结构化的教育数据。更关键的是要能够把这些非结构化数据,通过模型在教育过程中去指导、帮助教师以及指导整个系统开发,然后再去获取数据优化模型,通过往复的过程以后,可以真正实现科学化指导。
甘健侯:好的教育大数据需要对教育数据进行深度挖掘。这个过程中需要综合运用数学统计、机器学习、数据挖掘和人工智能等多交叉领域的技术和方法,对教育大数据进行处理和分析。通过数据建模,发现学习者学习结果与学习内容、学习资源和教学行为等变量的相关关系,来预测学习者未来的学习趋势,促进学习者有效学习的发生。
方海光:好的教育大数据也是重要的教育资源之一。为使数据资源物尽其用,当前最需要的就是挖掘能够促进共建共享的教育大数据。共建共享不仅有利于加速教育大数据产品的应用和开发,也有利于降低成本优化体验。对于半结构化或非结构化的数据,可以采用自然语言理解、模式识别等人工智能手段进行信息抽取,还可以通过专家人为地进行协同标签处理,这样可以将其转化为结构化数据。对于杂质较多的数据,可以在数据挖掘时进行数据清洗。对于实时产生的数据可以使用自动获取效率优先的方式来采集数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31