
Python设计模式之策略模式
设计模式是我们实际应用开发中必不可缺的,对设计模式的理解有助于我们写出可读性和扩展更高的应用程序。虽然设计模式与语言无关,但并不意味着每一个模式都能在任何语言中使用,所以有必要去针对语言的特性去做了解。设计模式特别是对于java语言而言,已经有过非常多的大牛写过,所以这里我就不重复了。对于Python来说就相对要少很多,特别是python语言具有很多高级的特性,而不需要了解这些照样能满足开发中的很多需求,所以很多人往往忽视了这些,这里我们来在Pythonic中来感受一下设计模式。
1.介绍
策略模式也是常见的设计模式之一,它是指对一系列的算法定义,并将每一个算法封装起来,而且使它们还可以相互替换。策略模式让算法独立于使用它的客户而独立变化。
这是比较官方的说法,看着明显的一股比较抽象的感觉,通俗来讲就是针对一个问题而定义出一个解决的模板,这个模板就是具体的策略,每个策略都是按照这个模板来的。这种情况下我们有新的策略时就可以直接按照模板来写,而不会影响之前已经定义好的策略。
2.具体实例
这里我用的《流畅的Python》中的实例,刚好双11过去不久,相信许多小伙伴也是掏空了腰包,哈哈。那这里就以电商领域的根据客户的属性或订单中的商品数量来计算折扣的方式来进行讲解,首先来看看下面这张图。
通过这张图,相信能对策略模式的流程有个比较清晰的了解了。然后看看具体的实现过程,首先我们用namedtuple来定义一个Customer,虽然这里是说设计模式,考虑到有些小伙伴可能对Python中的具名元组不太熟悉,所以这里也简单的说下。
namedtuple用来构建一个带字段名的元组和一个有名字的类,这样说可能还是有些抽象,这里来看看下面的代码
from collections import namedtuple
City = namedtuple('City','name country provinces')
这里测试就直接如下
changsha = City('Changsha','China','Hunan')
print(changsha)
结果如下
City(name='Changsha', country='China', province='Hunan')
还可以直接调用字段名
print(changsha.name)
更多用法可以去看看官方文档,这里重点还是讲设计模式。
好了,先来看看用类实现的策略模式
# 策略设计模式实例
from abc import ABC, abstractmethod
from collections import namedtuple
# 创建一个具名元组
Customer = namedtuple('Customer', 'name fidelity')
class LineItem:
def __init__(self, product, quantity, price):
self.product = product
self.quantity = quantity
self.price = price
def total(self):
return self.price * self.quantity
# 上下文
class Order:
# 传入三个参数,分别是消费者,购物清单,促销方式
def __init__(self, customer, cart, promotion=None):
self.customer = customer
self.cart = list(cart)
self.promotion = promotion
def total(self):
if not hasattr(self, '__total'):
self.__total = sum(item.total() for item in self.cart)
return self.__total
def due(self):
if self.promotion is None:
discount = 0
else:
discount = self.promotion.discount(self)
return self.total() - discount
# 输出具体信息
def __repr__(self):
fmt = '<Order total: {:.2f} due: {:.2f}>'
return fmt.format(self.total(), self.due())
# 策略 抽象基类
class Promotion(ABC):
@abstractmethod
def discount(self, order):
"""
:param order:
:return: 返回折扣金额(正值)
"""
# 第一个具体策略
class FidelityPromo(Promotion):
""" 为积分为1000或以上的顾客提供5%的折扣 """
def discount(self, order):
return order.total() * .05 if order.customer.fidelity >= 1000 else 0
# 第二个具体策略
class BulkItemPromo(Promotion):
""" 单个商品为20个或以上时提供10%折扣"""
def discount(self, order):
discount = 0
for item in order.cart:
if item.quantity >= 20:
discount = item.total() * .1
return discount
# 第三个具体策略
class LargeOrderPromo(Promotion):
""" 订单中的不同商品达到10个或以上时提供%7的折扣"""
def discount(self, order):
distinct_items = {item.product for item in order.cart}
if len(distinct_items) >= 10:
return order.total() * .07
return 0
这里是用类对象来实现的策略模式,每个具体策略类(折扣方式)都继承了Promotion这个基类,因为discount()是一个抽象函数,所以继承Promotion的子类都需要重写discount()函数(也就是进行具体的打折信息的函数),这样一来,就很好的实现对象之间的解耦。这里的折扣方式有两类,一类是根据用户的积分,一类是根据用户所购买商品的数量。具体的折扣信息也都在代码块里面注释了,这里就不重复了,接下来我们来看看具体的测试用例
joe = Customer('John Doe', 0)
ann = Customer('Ann Smith', 1100)
cart = [LineItem('banana', 4, .5),
LineItem('apple', 10, 1.5),
LineItem('watermellon', 5, 5.0)]
print('John: ', Order(joe, cart, FidelityPromo()))
print('Ann: ', Order(ann, cart, FidelityPromo()))
这里定义了两消费者,John初始积分为0,Ann初始积分为1100,然后商品购买了4个香蕉,10个苹果,5个西瓜...说的都要流口水了,哈哈哈。回到正题,输出时采用第一种折扣方式,Run一下
John: <Order total: 42.00 due: 42.00>
Ann: <Order total: 42.00 due: 39.90>
3.优化措施
➀类变函数
上面的策略模式是使用的类对象实现的,其实我们还可以用函数对象的方法实现,看看具体的代码
# 策略设计模式实例
from collections import namedtuple
# 创建一个具名元组
Customer = namedtuple('Customer', 'name fidelity')
class LineItem:
def __init__(self, product, quantity, price):
self.product = product
self.quantity = quantity
self.price = price
def total(self):
return self.price * self.quantity
# 上下文
class Order:
def __init__(self, customer, cart, promotion=None):
self.customer = customer
self.cart = list(cart)
self.promotion = promotion
def total(self):
if not hasattr(self, '__total'):
self.__total = sum(item.total() for item in self.cart)
return self.__total
def due(self):
if self.promotion is None:
discount = 0
else:
discount = self.promotion.discount(self)
return self.total() - discount
def __repr__(self):
fmt = '<Order total: {:.2f} due: {:.2f}>'
return fmt.format(self.total(), self.due())
# 第一个具体策略
def fidelity_promo(order):
""" 为积分为1000或以上的顾客提供5%的折扣 """
return order.total() * .05 if order.customer.fidelity >= 1000 else 0
# 第二个具体策略
def bulk_item_promo(order):
""" 单个商品为20个或以上时提供10%折扣"""
discount = 0
for item in order.cart:
if item.quantity >= 20:
discount = item.total() * .1
return discount
# 第三个具体策略
def large_order_promo(order):
""" 订单中的不同商品达到10个或以上时提供%7的折扣"""
distinct_items = {item.product for item in order.cart}
if len(distinct_items) >= 10:
return order.total() * .07
return 0
这种方式没有了抽象类,并且每个策略都是函数,实现同样的功能,代码量更加少,并且测试的时候可以直接把促销函数作为参数传入,这里就不多说了。
➁选择最佳策略
细心的朋友可能观察到,我们这样每次对商品进行打折处理时,都需要自己选择折扣方式,这样数量多了就会非常的麻烦,那么有没有办法让系统帮我们自动选择呢?当然是有的,这里我们可以定义一个数组,把折扣策略的函数当作元素传进去。
promos = [fidelity_promo,bulk_item_promo,large_order_promo]
然后定义一个函数
def best_promo(order):
""" 选择可用的最佳折扣 """
return max(promo(order) for promo in promos)
这样一来就省了很多时间,系统帮我们自动选择。但是仍然有一个问题,这个数组的元素需要我们手动输入,虽然工作量小,但是对于有强迫症的猿来说,依然是不行的,能用自动化的方式就不要用手动,所以继续做优化。
promos = [globals()[name] for name in globals()
if name.endswith('_promo')
and name != 'best_promo']
这里使用了globals()函数,我们就是使用这个函数来进行全局查找以’_promo’结尾的函数,并且过滤掉best_promo函数,又一次完成了我们的自动化优化。
最后,这篇blog就到这里了,相信你我都更加了解Python中的策略模式了,这里我推荐对Python感兴趣的朋友去看一下《Fluent Python》这本书,里面讲述了很多的高级特性, 更加让我们体验到Python中的美学。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10