一步一步教你分析消费者大数据
做过面向消费者产品解决方案的人都知道,每个项目开始前,客户都会提一些要求或者对现在营销状况的顾虑,比如我们想了解一下我们潜在消费者是谁;怎么发优惠券效果最好;或者,我们应该推出什么样子的新产品,能够赢得消费者口碑和青睐。在量化决策分析法中,这一系列的前期需求,我们把他称作为:客户需求或未来期望。
接下来,你需要了解该问题的现状,比如现有产品或服务的消费者是怎么样的,以前发的优惠券效果怎么样,现在市场的销量趋势如何等等。
当了解了客户需求和现在的现状后,我们需要慢慢抽丝剥茧,找出解决方案,填补这个空档。
一般来说,没有任何方法论或者经验的咨询员或者分析师听到客户的这些期望后,他们会开始不知所措,无从下手。他们完全不知道该从哪个角度切入,收集哪些数据,做哪些假设,用什么方法分析。
其实像这类问题是有方法论的,我们可以用四步循序渐进的方法来搭建现状与未来的桥梁。
第一步:描述性分析-What
发现问题。我们可以用看病的场景来类比下,病人去看病,说最近不舒服。于是医生让病人进一步描述一下怎么不舒服。这里也是一样,拿优惠促销的案例来说,我们会先了解客户以往有没有做过类似的促销案例,什么时候做的,效果怎么样。经由这些的问题产生一系列的KPI。
KPI产生的方法有以下几种:
1)我们提问,客户解答
2)从客户公司数据库获得信息(SQL)
3)从外部数据获得信息(第三方数据加强)
4)竞争伙伴信息
5)政策信息
6)语义分析
7)其他
获得KPI的工具:
1)问答(座谈,电话,Email,短信,问卷)
2)数据库(SQL)
3)Excel
4)R,Python等软件
5)网站搜索资料
6)自然语言学习
7)其他
分析这些KPI变量:
这些KPI可以是绝对数,百分数,也可以是指数。可以是过去不同时期的对比数据,也可以是不同分组(如:人群分组,模式分组)的对比数据,或者和竞争对手的对比数据等。
通常 KPI分析的方法有:
1)单变量分析(univariate)
2)双变量分析(bivariate)
3)多变量分析(multivariate)
4)假设验证(hypothesis)
5)简单建模(clustering分组)
经过对这些KPI的分析,可以帮助我们形成:
1)已有消费者人物画像
2)潜在消费者人物画像
3)忠诚客户画像
4)消费者价值分组
5)其他
第二步:诊断性分析(why)
回答问题。我们同样用医生看病的例子来类比一下,当医生问完病人问题,通过问诊,X光等等,医生开始利用自己掌握的知识来对病人的病情做出诊断。
放到分析法中,这一步通常我们需要:
1)了解因果关系
2)了解各因素间敏感性如何
我们需要了解是由哪个原因,或者哪些原因造成了现在的市场现状。比如在前一个阶段,我们得到了50个非常有用的KPI,通过因果关系分析,我们确定了,其中有10个KPI起着重要的作用。结下来,我们会问,这10个因素中,每个因素单独的贡献是多少,有些可能非常高,有些可能相对较低。
那这个问题,我们可以通过建模来得到每个因素的贡献大小,同时模型还能起到剔除高相关变量的作用。还有一种用到模型的原因是,当因素达到上百,上千个的时候,很难用传统方法在如此多的因素中,甄别出最有用的事那些,这种情况下,也需要用到模型来帮助选变量,最后一个原因是我们可以甄别这个因素是正向促进因素,还是反向促进因素。
通过建模的结果,我们可以得到以下以下关于消费者的模型:
1)忠诚度模型
2)满意度模型
3)价格敏感度模型
4)归因模型
5)客户流失模型
产生这些模型背后的算法有:
1)线性回归
2)逻辑回归
3)决策树
4)时间序列
5)Random forest,boosting,SVM,PCA等等
第三步:预测分析
预测正确的时机,得到先发制人的营销效果。有了第一步和第二步的准备,我们需要预测一下,如果我做一些调整,将会有什么变化和影响。
用到的模型有:
1)意向打分模型
2)品牌忠诚度打分
3)购买渠道偏好模型
4)触媒使用习惯
6)销量预测
5)生存分析模型
比如: 意向打分模型 。我们发现,如果用现有的因素,消费者会转换的倾向可能是60%,但是如果我对一些因素做了一些调整,如:我给现有客户多发2个广告,客户会购买的可能性上升到65%;如果,给客户多发5个广告,客户会购买的可能性上升到85%。通过这样的调整,我能够预估,将来的广告成本,或者转化带来的收入等。
又比如: 通过时间序列模型,我们可以预测到明年购买某品牌车型的消费者有10万人,这样对明年的生产计划和营销计划就能有一个前期的应对准备。
第四步:决策分析应用
1)提供战略推荐
2)优化
3)市场模拟
4)A/B测试
第三步的例子提到多发2个广告,转化率为65%;多发5个广告转化率为85%。那么如果多发3个?多发4个广告,结果又会如何呢?学术界一直在寻找最优化完美的答案来解决这个问题:我到底发几个广告,才能让我的利润达到最大化呢?
我们都知道在做回归模型的时候,有以下几个假设条件:
2、对于解释变量的所有观测值,随机误差项有相同的方差;
3、随机误差项彼此不相关;
4、解释变量是确定性变量,不是随机变量,与随机误差项彼此之间互相独立
5、解释变量之间不存在精确的线性关系,即解释变量的样本观测值矩阵是满秩矩阵
6、随机误差项服从正态分布
实际上,现实生活中很难达到这种理想的状态,而且最大化这个概念,从数学角度讲,会涉及到优化求极值的问题,很多情况下,我们实际上求到是局部优化(localoptimization)的解,而不是全局优化(globaloptimization)的解。
所以在这种情况下,管理学中衍生出了市场模拟方法来决定最后方案,最有名的一个方法是沙盘模拟,但是这些模拟往往到了真正落地的时候,又会和之前的结果有差距。
所以近些年来,越来越多的公司选择做A/B测试。当你对几个方案没有很大的把握,或者对预测结果不是特别自信的时候,A/B测试的出现,解决了这些顾虑。最近的一个成功的案例是Amazon通过A/B测试的方法,把“order”从账户栏,放入了主页的菜单栏,为公司带来的非常可观的营收增长。
A/B测试需要注意的是:
1)样本的数量
2)人群的选择
3)时间的跨度
4)显著性统计
整个决策分析法即是阶梯又是一个闭环,根据实际的市场反应,再进行进一步的分析与迭代优化。
读完整个量化决策分析法后,你应该对以消费者为核心的大数据解决方案有了一定的思路框架。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16