热线电话:13121318867

登录
首页精彩阅读Python基于动态规划算法解决01背包问题实例
Python基于动态规划算法解决01背包问题实例
2018-05-15
收藏

Python基于动态规划算法解决01背包问题实例

本文实例讲述了Python基于动态规划算法解决01背包问题。分享给大家供大家参考,具体如下:

在01背包问题中,在选择是否要把一个物品加到背包中,必须把该物品加进去的子问题的解与不取该物品的子问题的解进行比较,这种方式形成的问题导致了许多重叠子问题,使用动态规划来解决。n=5是物品的数量,c=10是书包能承受的重量,w=[2,2,6,5,4]是每个物品的重量,v=[6,3,5,4,6]是每个物品的价值,先把递归的定义写出来:

然后自底向上实现,代码如下:

defbag(n,c,w,v):
  res=[[-1forjinrange(c+1)]foriinrange(n+1)]
  forjinrange(c+1):
    res[0][j]=0
  foriinrange(1,n+1):
    forjinrange(1,c+1):
      res[i][j]=res[i-1][j]
      ifj>=w[i-1]andres[i][j]<res[i-1][j-w[i-1]]+v[i-1]:
        res[i][j]=res[i-1][j-w[i-1]]+v[i-1]
  returnres
defshow(n,c,w,res):
  print('最大价值为:',res[n][c])
  x=[Falseforiinrange(n)]
  j=c
  foriinrange(1,n+1):
    ifres[i][j]>res[i-1][j]:
      x[i-1]=True
      j-=w[i-1]
  print('选择的物品为:')
  foriinrange(n):
    ifx[i]:
      print('第',i,'个,',end='')
  print('')
if__name__=='__main__':
  n=5
  c=10
  w=[2,2,6,5,4]
  v=[6,3,5,4,6]
  res=bag(n,c,w,v)
  show(n,c,w,res)

输出结果如下:


数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询