大数据时代的挑战、价值与应对策略
随着移动互联网、物联网、云计算等的快速发展,及视频监控、智能终端、应用商店等的快速普及,全球数据量出现爆炸式增长。在此背景下,电信运营商在其网络无休止扩容的同时,却面临“增量不增收”的困境;而一些采用“数据驱动型决策”模式经营的公司,则可将其生产力提高5%~6%。因此,有必要深入研究大数据时代(Big Data Era)的挑战、价值与务实应对策略。
1大数据时代的基本特征
据统计,2010年以互联网为基础所产生的数据比之前所有年份的总和还要多;而且不仅是数据量的激增,数据结构亦在演变。Gartner预计,2012年半结构和非结构化的数据,诸如文档、表格、网页、音频、图像和视频等将占全球网络数据量的85%左右;而且,整个网络体系架构将面临革命性改变。由此,所谓大数据时代已经来临!
对于大数据时代,目前通常认为有下述四大特征,称为“四V”特征:
(1)量大(Volume Big)。数据量级已从TB(1012字节)发展至PB乃至ZB,可称海量、巨量乃至超量。
(2)多样化(Variable Type)。数据类型繁多,愈来愈多为网页、图片、视频、图像与位置信息等半结构化和非结构化数据信息。
(3)快速化(VelocityFast)。数据流往往为高速实时数据流,而且往往需要快速、持续的实时处理;处理工具亦在快速演进,软件工程及人工智能等均可能介入。
(4)价值高和密度低(Value HighandLowDensity)。以视频安全监控为例,连续不断的监控流中,有重大价值者可能仅为一两秒的数据流;360°全方位视频监控的“死角”处,可能会挖掘出最有价值的图像信息。
2大数据时代面临的挑战
(1)运营商带宽能力与对数据洪流的适应能力面临前所未有的挑战,管道化压力化解及“云-管-端”的有效装备也均面临新挑战。
(2)大数据的“四V”特征在数据存储、传输、分析、处理等方面均带来本质变化。数据量的快速增长,对存储技术提出了挑战;同时,需要高速信息传输能力支持,与低密度有价值数据的快速分析、处理能力。
(3)海量数据洪流中,在线对话与在线交易活动日益增加,其安全威胁更为严峻;而且现今黑客的组织能力、作案工具、作案手法及隐蔽程度更上一层楼,典型的有APT(Advanced Persistent Threat,高级持续性安全威胁)。
(4)大数据环境下通过对用户数据的深度分析,很容易了解用户行为和喜好,乃至企业用户的商业机密,对个人隐私问题必须引起充分重视。
(5)大数据时代的基本特征,决定其在技术与商业模式上有巨大的创新空间,这将对可持续发展起关键作用。
(6)大数据时代的基本特征及安全挑战,对政府制订规则与监管部门发挥作用提出了新的挑战。
3大数据带来的价值
(1)利用大数据特征,借助云计算等有效工具,深度挖掘流量与数据价值,可帮助运营商实施好流量经营,减轻管道化风险,发扬“云-管-端”的智能管道的威力。
(2)多业务环境下掌握用户体验效果尤为重要,可从海量用户数据中深度分析、挖掘出用户的行为习惯和消费爱好,以实施精准营销及网络优化,掌控数据增值的“金钥匙”。
(3)掌握好大数据的存储、分类、挖掘、快速调用和决策支撑,并应用于企业的日常运营、维护及战略转型中,成为企业可持续发展、维持竞争优势的当务之急与重要途径。
(4)充分利用对大数据的分析、挖掘,可帮助找到隐蔽性极强的APT之类的安全威胁,助力信息安全部门找到应对新型安全威胁的有效途径。
(5)通过对公共大数据的分析、挖掘与利用,可减少欺诈行为及错误数据的负面作用、追收逃税漏税及刺激公共机构生产力等,帮助政府节省开支。例如英国政府即通过此途径节省大约330亿英镑/年。
4大数据时代的应对策略
(1)大数据时代应以智慧创新理念融合大数据与云计算,在大数据洪流中提升知识价值洞察力,实施高效实时个性化运作,建立有效增值的商业模式,确保应对APT之类的新型安全威胁。
(2)电信运营商转型中流量经营已成共识,即以智能管道与聚合平台为基础,以扩大流量规模、提升流量层次及丰富流量内涵作为基本经营方向,并以释放流量价值为基本目标,可见大数据和云计算的深度融合与此流量经营目标十分吻合。实际上已经有一些运营商借助大数据Hadoop云工具管理与分析网络中的用户数据,为日常运维及制定市场战略等提供有效支撑。
(3)针对大数据时代的基本特征,加强全方位创新。包括IBM、EMC、HP、Microsoft等在内的IT巨头,纷纷加速收购相关大数据公司进行技术整合,寻找数据洪流大潮中新的立足点。而涉及人工智能、机器学习等新技术的创新应用,已初显效益。
(4)将大数据时代全方位创新工作和智慧城市发展紧密结合。借助移动互联网、大数据与云计算的融合、智能运营管道等,建立智能平台,优化配置城市资源,向真正的智慧城市迈进。
(5)借助大数据创新处理技术应对APT安全攻击。APT安全攻击的最主要特征为单点隐蔽能力强、攻击空间路径不确定、攻击渠道不确定;同时APT攻击一旦入侵成功则长期潜伏,攻击时间上具有持续性。目前,全流量审计方案具备强大的实时检测能力与事后回溯能力,并可将安全工作人员的分析能力、计算机存储与运算能力组合在一起,是一种较完整的解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30