
大数据自上而下提升统计和算法的效率
我们在去开发这些计算体系时,不管是软件、计算,其实都是在谈大数据分析的概念性,什么时候出现问题,我们如何达到高准确度,这只是这个问题的开始。其实作为一个计算科学家,我们经常会遇到很多的问题,有些是统计学方面的问题,但是我们没有联合统计学家一起考虑和解决这些问题。
比如说这个结果的一致性,那么还有引导程序的理论,那么就像常规的引导程序一样,都会达到一些限值,从上至下的计算,统计学的利弊权衡,什么意思呢?我们对数据计算的理解,也就是说更多的数据需要更多的计算,更多的计算能力。我们如何来做?到底是并行处理?还是子样抽取等等。你给我更多的数据,我会更高兴,因为我能够获得更高的准确度,我的错误会更小,我会以更低的成本获得更正确的答案。对于统计学家来说这是好的,但是对于做计算的来说这个不大好,因为我们将这样思考这个问题。也就是说给我一些数据,那么我们有一个新的观念,叫做控制的算法弱化,比如说我的数据量不够,我可以快速的处理它。数据太多,我的处理速度会慢下来。从计算角度来说,控制的算法能够让我更快速的处理数据,也就是算法的弱化。统计学的角度来说,能够处理更多的数据,获得更好的统计学上的答案性能提高。尽管计算的预算成本不变,但是我们能够处理更多的数据,以更快的速度,我们付出的代价就是算法的弱化。
那么,这个坐标你们不经常看,横轴指我们取样的数量,纵轴代表的是运行时间。我们看一下到底有多少的错误。我们现在就要思考固定风险。比如说在我们错误率是0.01,这个座标的区域,对于统计学家来说,如果要固定风险的话,那么必须有一定数量的样品,才能够获得这样的结果。所以,这是一个叫做典型的预计理论,大家都非常了解。同样对于在计算机科学方面,我们有所谓的负载均衡的概念,不管你有多少个样本,但是你一定要有足够的运营时间,否则的话,你是无法解决这个问题的,这是非常明确的一点。
所以,我们看一下实际的算法。有一定的运行时间,有固定的风险,在右边使用的所有算法,把算法弱化,我们就可以处理更多的数据。下面我来谈一下,这就是我们所说的问题降噪,所谓降噪就是在数据方面有一些属于制造噪音的数据。我们如何做降噪?首先,我们假设可能的答案是X这样的一个分样,然后用高准确度覆盖它,所以这是一个推理预估的过程。比如说我要找到X的值,它和Y是非常相似的,这是一个自然的预估。现在X是一个非常复杂的值,我无法做,所以我要做一个凸形的值域,我要做定性,同时可以获得最优点,我需要把它放在一个可行的规模大小之内,那么也就是任何一个固定风险都是基于X的。左边是风险,我需要它的一半,这里存在复杂性,如果想知道更多的复杂性,你们可以看一些所谓理论处理方面的文献,你们可以读一下,来做这样均衡的曲线。
我们看一下相关的内容,如果你要达到一定的风险,你必须要有一定的取样点。这是一个C,也许这个C也是计算方面很难算出来的,所以我们需要做C子集的,把这个子集进行弱化,这样我们就可以更好的计算了。我们可以做分层的层级,我们称为池域,并且根据计算的复杂度进行排序的。同时,还有统计学的复杂性,然后进行一个权衡。你们可以从数学计算出这个曲线。在这里举个例子,比如说X,刚才已经有人介绍过子集是什么意思,然后你们可以定运行时间,还有取样的复杂性,然后可以算出答案。你们看一下简单的C,复杂的C,然后你们看一下运行的时间是在下降,复杂性是一个恒值,这样你的算法更简单,可以用于大数据,既不会不会增加风险,也可以在举证方面更加简化。如果是一个信号的图值,你的运行时间由PQ值决定,你们还有一个域值的话,我们会有一个恒定的取样,大家可以同时按照“列”计算,获得我们预期的准确度,而运行时间不变,大家可以自己看这些公式。
那么,这种分析我希望大家能够记住的是和这种理论计算科学,重点就是能够把准确度放到一个水平。因为我们要去关心有关质量方面、统计学方面的风险,计算科学方面的算法能够帮助我们解决比较大的问题,就是大数据带来的大问题。同时,我们还有很多的数据理论可以适用,我们不要从统计学简单的角度来考虑,而是从计算的角度考虑。
也许你们还要去学一些统计学方面的基本理论,当然如果你们是学统计学的话,你们也要参加计算机科学的课程。对于两门都学的人,你们应该把这两个学科放到一起思考,不是统计学家只考虑统计学,计算机科学家只考虑计算机方面,我们需要解决统计学方面的风险。因此,我们可以更好的处理十万个采样点,都不会遇到问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10