什么是大数据问题
在我们看来,计算机科学经常谈的是对资源的管理。最典型的资源就是时间、空间、能量。数据在以前并没有被认为是一种资源,而是被认为是一种使用资源的物品。但是,我们看到现在的数据已经被认为是一种资源,这是我们可以利用并从中获得价值和知识的一种资源。我们将数据资源同我们所用的时间、空间资源结合在一起形成一个系统,从而使我们做出适时的、节约成本、高质量的决定和结论,因此我们必须以不同方式进行权衡。但是数据资源和时间、空间资源有很大的不同。如果我给你更多的时间和空间你会更开心,但是数据却不是这样,并不是给你越多的数据你就会越开心。就像是你走进一个公司,问他们你们最大的问题是什么,他们通常会说最大的问题就是数据太多了。目前来看,越来越多的数据会给我们带来越来越大的麻烦。因此我们必须找到一个解决这个问题的办法,一种是统计学的方式,另外一种是计算的方式。统计学方式可能更微妙,所以我们等一下花更多时间在上面。
1. 对复杂性的疑问比数据增长的速度更快;
一些数据科学家他们经常谈,在一个数据库的表格中行代表人,而列是对人的特征记录,基本的数据库可能会有几千个行--意味着有几千个人的信息在一个数据库里,然后你再收集每个人的基本信息,并不需要太多,比如个人的年龄、地址、高度、收入,这些数据足以让你了解在这个数据库中的每一个人。
现在我们来考虑数百万的“行”,因为我们确实对每个人的个性和细节十分感兴趣。比如说你是在天津居住,你喜欢迈克尔·杰克逊,你喜欢骑自行车,那么你患某种疾病的概率是多少等等,我们在数据库中都有关于你的信息。所以我们看到有关人数的行数在不断的增加,同时描述也更多,那么列数也在增加。有些我们还可以添加一些列,比如说这个人昨天吃了什么,他的音乐、读书的偏好,还有他基因的特点等。但问题是我们不光对个人的列感兴趣,我们对列的集合更感兴趣。如果你生活在天津,你喜欢骑自行车,你最喜欢吃的水果是苹果,这些都是具体的这些列的信息集合。
现在问题就是我们需要指数级的列和行增长的组合方式,随着行数和列数的线性增长,我们考虑的数据就会呈指数倍的增加。我们来举一个医学方面的案例,把列设想成肝病的信息--1是有肝病,0是没有肝病;但是有一些列所描述的情况能够很好地预测肝病的发生。假设如果你喜欢在天津,喜欢骑自行车,喜欢吃香蕉,这样的人就会得肝病。如果你这个时候去看医生,医生问你住在哪里,你说天津;医生问你周末做什么,你说骑自行车;问你最喜欢吃的水果是什么,你说是香蕉,那么医生就会告知你需要检查一下肝脏。这当然是个假设。任何指令集里面都需要看这些数据,进行论证,找到有意义的模式。但当数据变得越来越大,找到有意义的模式和信息变得越来越难。所以,大数据并不是非常好的事情,并不是有更多的数据就会获得更多的知识。大数据其实才是最大的麻烦。现在来看数据越来越难转变成知识,如果我们想要获得真正有意义的东西,我们需要采取一些行动。我们统计学家非常担心:我们应当如何消除噪音,真正得到里面所含的知识。统计学上的程序和算法,必须运行在计算机上,.大的数据会花更多的时间运行,使我们不能快速的做决策了。真正有大问题的时候,我们不知道如何解决和运行统计的程序,做出快速的决策,因此我们发现了第二个解决方案。第一个是统计学上,第二个是计算方面。
2.大数据会导致在可接受的时间范围内复杂算法不能够运用
第二个就是计算方面,算法需要时间运行,还要登录、输出等,需要几秒钟的决策,比如在线的拍卖需要几秒钟做决策,我们还需要给予一些数据,比如说输出的算法。当数据变多,这种方法可能会完成不了,或者是需要很多的运行时间,这是时我们要怎么做?要把这些数据舍弃掉吗?舍弃的结果是什么?可能使我的数据库空间增加,如果我不断地删除我的数据。我应当让数据运行慢一些,但是这样就会使处理的时间过长。我们面临很大的问题,我们将时间、空间与数据、不断增长的数据规模结合在一起,如果没有很好的处理这些大数据的扩展算法。这确实是一个存在的问题,我认为这个问题是根本且基础的。
数据分析咨询请扫描二维码
明确战略目标与业务对齐 数据战略的关键性 为了有效实施数据战略,首要任务是明确战略目标,并确保其与组织的总体业务战略相一 ...
2024-11-29数据安全管理培训课程的重要性不言而喻。在当今信息爆炸的时代,数据扮演着关键角色,因此学习如何有效地管理和保护这些数据至关 ...
2024-11-29数据质量问题 数据标准化的核心挑战之一是处理数据质量问题。在现实世界中,数据往往不完美:数据可能缺失、包含噪声或存在错误 ...
2024-11-29数据分布与回归分析之间有着密切的联系。在进行回归分析时,数据的分布特性对模型选择和结果准确性至关重要。本文将探讨数据分布 ...
2024-11-29政府数据开放共享是当今数字时代的必然趋势,对于提升政府治理能力、促进经济增长与创新、推动社会参与与民主决策等方面起着至关 ...
2024-11-29数据生存周期模型(Data Lifecycle Model)是一种用于管理数据从创建到废弃的全过程的框架。它涵盖了数据的各个阶段,包括数据的 ...
2024-11-29在当今数据驱动的时代,保证数据的准确性和完整性至关重要。数据质量分析是一项关键任务,涉及多个环节和技术。本文将探讨数据质 ...
2024-11-29评估数据集成与共享效果 数据质量: 数据集成效果核心指标之一,可通过准确性、一致性、完整性和及时性衡量。对比前后数据以检 ...
2024-11-29指标数据在业务决策中扮演着至关重要的角色。通过构建和应用合理的指标体系,企业能够全面了解业务状况,识别问题,并制定优化策 ...
2024-11-29数据在现代社会扮演着至关重要的角色,而对数据的合理处理也变得愈发重要。数据退役后,必须谨慎对待,确保其中敏感信息不被泄露 ...
2024-11-29在推荐和评测数据应用工具时,我们需要根据不同的需求和场景来做出明智的选择。以下是基于证据的详细分析: Excel 作为入门级工 ...
2024-11-29在当今日益数字化的世界中,数据已经成为组织和个人不可或缺的资产。然而,数据的积累和应用也带来了诸多安全挑战,因此数据制度 ...
2024-11-29在当今信息爆炸的时代,数据已经被公认为企业的最宝贵资产之一。然而,要想充分发挥数据的潜力,建立健全的数据集成与共享文化至 ...
2024-11-29《Python数据分析极简入门》 第3节 9 Pandas 文本数据 importpandasaspd 1、cat() 拼接字符串 d= ...
2024-11-29定制化数据服务在当今数据驱动的世界中扮演着至关重要的角色。这种个性化解决方案不仅提高了企业的数据处理效率,还深刻影响了客 ...
2024-11-28在当今信息时代,数据成为各行各业中不可或缺的资产。然而,数据的真正价值取决于其质量,而数据元作为数据的基本组成部分,在数 ...
2024-11-28在当今信息爆炸的时代,数据被认为是企业成功的关键。然而,仅拥有数据是不够的;必须制定和执行一项坚实的数据战略,以确保数据 ...
2024-11-28数据战略评估的关键在于确保数据管理和应用项目的成功实施。通过建立业务案例、投资模型,并跟踪进度,旨在实现项目目标。这种评 ...
2024-11-28数据战略在客户关系管理(CRM)中扮演着关键角色,通过收集、分析和应用数据,企业能够更好地了解客户需求、提升客户体验,并制 ...
2024-11-28当谈及现代商业和管理中不可或缺的环节时,数据分析与决策支持无疑是其中的焦点。这一关键领域的核心在于通过数据驱动的方式帮助 ...
2024-11-28