逻辑回归属于概率统计的分类算法模型的算法,是根据一个或者多个特征进行类别标号预测。在R语言中可以通过调用logit函数执行逻辑回归分类算法并预测输出概率。通过调用glm函数将family参数也就是响应分布指定为binominal(二项式),就是使用逻辑回归算法。
操作
同进述内容一样准备好训练数据集与测试数据集。
fit = glm(churn ~ .,data = trainset,family = binomial)
summary(fit)
Call:
glm(formula = churn ~ ., family = binomial, data = trainset)
Deviance Residuals:
Min 1Q Median 3Q Max
-3.1519 0.1983 0.3460 0.5186 2.1284
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 8.3462866 0.8364914 9.978 < 2e-16 ***
international_plan1 -2.0534243 0.1726694 -11.892 < 2e-16 ***
voice_mail_plan1 1.3445887 0.6618905 2.031 0.042211 *
number_vmail_messages -0.0155101 0.0209220 -0.741 0.458496
total_day_minutes 0.2398946 3.9168466 0.061 0.951163
total_day_calls -0.0014003 0.0032769 -0.427 0.669141
total_day_charge -1.4855284 23.0402950 -0.064 0.948592
total_eve_minutes 0.3600678 1.9349825 0.186 0.852379
total_eve_calls -0.0028484 0.0033061 -0.862 0.388928
total_eve_charge -4.3204432 22.7644698 -0.190 0.849475
total_night_minutes 0.4431210 1.0478105 0.423 0.672367
total_night_calls 0.0003978 0.0033188 0.120 0.904588
total_night_charge -9.9162795 23.2836376 -0.426 0.670188
total_intl_minutes 0.4587114 6.3524560 0.072 0.942435
total_intl_calls 0.1065264 0.0304318 3.500 0.000464 ***
total_intl_charge -2.0803428 23.5262100 -0.088 0.929538
number_customer_service_calls -0.5109077 0.0476289 -10.727 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1938.8 on 2314 degrees of freedom
Residual deviance: 1515.3 on 2298 degrees of freedom
AIC: 1549.3
Number of Fisher Scoring iterations: 6
找到分类模型中包含的可能导致错误分类的非显著变量,仅使用显著的变量来训练分类模型。
fit = glm(churn ~ international_plan + voice_mail_plan + number_customer_service_calls,data = trainset,family = binomial)
summary(fit)
Call:
glm(formula = churn ~ international_plan + voice_mail_plan +
number_customer_service_calls, family = binomial, data = trainset)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.6485 0.3067 0.4500 0.5542 1.6509
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.68272 0.12064 22.237 < 2e-16 ***
international_plan1 -1.97626 0.15998 -12.353 < 2e-16 ***
voice_mail_plan1 0.79423 0.16352 4.857 1.19e-06 ***
number_customer_service_calls -0.44341 0.04445 -9.975 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1938.8 on 2314 degrees of freedom
Residual deviance: 1678.5 on 2311 degrees of freedom
AIC: 1686.5
Number of Fisher Scoring iterations: 5
调用fit使用一个内置模型来预测testset数据集的输出,可以通过调整概率是否高于0.5来改变类别标记的输出结果。
#这是选择预测之后的输出结果,这个参数能用在binomial数据,也就是响应变量是二分型的时候,这个参数选成type=response,表示输出结果预测响应变量为1的概率。
pred = predict(fit,testset,type = "response")
#将ped中概率大于0.5的设置TRUE,代表为“no”,没有流失客户,1
#将ped中概率小于0.5的设置FALSE,代表为“yes”,有流失
客户,0
Class = pred > 0.5
summary(Class)
Mode FALSE TRUE
logical 28 990
对测试数据集的分类和预测结果进行统计分析计数:
tb = table(testset$churn,Class)
> tb
Class
FALSE TRUE
yes 15 126
no 13 864
将上一步骤的统计结果用分类形式表输出,并生成混淆矩阵
churn.mod = ifelse(testset$churn == "yes",1,0)
> churn.mod
[1] 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
[44] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
[87] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0
[130] 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
[173] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
[216] 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
[259] 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0
[302] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
[345] 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
[388] 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0
[431] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
[474] 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
[517] 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0
[560] 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
[603] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0
[646] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0
[689] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0
[732] 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
[775] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
[818] 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
[861] 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[904] 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
[947] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
[990] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0
将Class转化成numeric
ABC = as.numeric(Class)
ABC与churn.mod 中0,1代表的意思相反,将ABC进行数值取反
BC = 1 - ABC
计算混淆矩阵
confusionMatrix(churn.mod,BC)
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 864 13
1 126 15
Accuracy : 0.8635
95% CI : (0.8408, 0.884)
No Information Rate : 0.9725
P-Value [Acc > NIR] : 1
Kappa : 0.138
Mcnemar's Test P-Value : <2e-16
Sensitivity : 0.8727
Specificity : 0.5357
Pos Pred Value : 0.9852
Neg Pred Value : 0.1064
Prevalence : 0.9725
Detection Rate : 0.8487
Detection Prevalence : 0.8615
Balanced Accuracy : 0.7042
'Positive' Class : 0
逻辑回归算法和线性回归非常相似,两者区别是在于线性回归算法中的变量是连续变量,而逻辑回归响应变量是二分类的变量(名义变量),使用逻辑回归算法主要目的是利用logit模型去预测和测量变量相关的名义变量的概率。逻辑回归公式:ln(P/(1-P)),P为某事情发生的概率。
逻辑回归的算法的优势是在于算法易于理解,能够直接输出预测模型的逻辑概率逻辑值以及结果的置信区间,与决策树难以更新模型不同,逻辑回归算法能够迅速在逻辑回归算法中合并新的数据,更新分类模型,逻辑回归算法的不足是无法处理多重共线性问题,因此解决变量必须线性无关。glm提供了一个通用的线性回归模型,可以通过设置family参数得到,当为binomial回归时,可以实现二元分类。
调用fit函数预测测试数据集testset的类别响应变量,fit函数能够输出类标号的概率,如果概率值小于等于0.5,意味预测得出的类标号与测试数据集的实际类标号不相符,如果大于0.5则说明两者是一致的,进一步调用summsary函数来得到预测的模型。最后进行计数统计与混淆矩阵。
数据分析咨询请扫描二维码
作为数据分析领域的探险家,我们常常面临着选择正确工具和技能的挑战。在这个数字化时代,学会并精通适合行业需求的工具显得尤为 ...
2024-12-03在数据分析领域,掌握多种软件和编程语言至关重要,选择合适的工具取决于个人需求和背景。让我们一起探索常用的数据分析工具及其 ...
2024-12-03在数据驱动的时代,数据分析成为了关键的技能。选择合适的数据分析工具至关重要,因为它们直接影响着你对数据的理解和分析效果。 ...
2024-12-03在当今数字化时代,数据分析已经成为各行各业中至关重要的角色。随着技术的迅猛发展和数据量的爆炸增长,数据分析师需要不断提升 ...
2024-12-03在当今数据驱动的世界中,数据分析已成为企业决策制定和战略规划的关键。其中,数据可视化是将复杂数据转化为简洁、易懂图形的重 ...
2024-12-03在当今信息爆炸的时代,数据扮演着至关重要的角色。学会利用数据进行分析不仅是一种技能,更是一种战略性决策工具。本文将探讨学 ...
2024-12-03揭示数据的无限价值 学习数据分析不仅仅是一种技能,更是探索信息海洋中宝藏的钥匙。数据分析的实用性体现在多个领域,如企业决 ...
2024-12-03在当今信息爆炸的时代,数据扮演着至关重要的角色。成为一名优秀的数据分析师,不仅需要具备技术实力,更需要拥有跨学科的知识储 ...
2024-12-03在当今数据驱动的世界中,成为一名优秀的数据分析师需要具备多方面的技能和知识。从统计学基础到机器学习算法,再到沟通能力和业 ...
2024-12-03在当今信息爆炸的时代,数据分析扮演着至关重要的角色。从商业决策到科学研究,数据分析为我们提供了深刻的洞察力和指导方向。然 ...
2024-12-03数据分析的基础知识 数据分析是一个多步骤且复杂的过程,旨在从数据中提取有价值信息以支持决策。这涉及数据的收集、清洗、转换 ...
2024-12-03数据分析是一门引人入胜且充满挑战的领域,它串联着数据的意义与我们的决策需求。无论你是初学者还是经验丰富的专家,掌握数据分 ...
2024-12-03数据分析培训的就业前景展现出令人振奋的态势。随着大数据、人工智能等前沿技术的快速发展,数据分析在各行各业中的应用愈发广泛 ...
2024-12-03在当今数字化时代,数据分析技能的重要性日益凸显。随着大数据、人工智能等领域的迅速发展,数据分析已经成为各行各业中备受瞩目 ...
2024-12-03作为一名数据分析师,除了扎实的数学基础外,掌握软技能同样至关重要。本文将深入探讨数据分析领域中不可或缺的软技能,并结合个 ...
2024-12-03市场需求与技术驱动 数据分析师的职业前景广阔,市场需求旺盛。在金融、医疗、零售、科技等领域,企业对数据分析师的需求不断攀 ...
2024-12-03市场需求与前景 数据分析师的职业前景广阔,伴随着多元化技能要求和清晰的职业发展路径。 在金融、医疗、零售、科技等领域, ...
2024-12-03作为数据分析师,掌握正确的工具和技能至关重要。在当今数据驱动的世界中,Python作为一种多才多艺的编程语言,在数据分析领域扮 ...
2024-12-03在当今数据驱动的世界中,数据分析师扮演着至关重要的角色。他们需要掌握各种工具和技能来从海量数据中提炼出有价值的信息。其中 ...
2024-12-03数据分析实践是一门引人入胜的艺术,融合了技术与创意,为各行业带来前所未有的洞察力与决策支持。本文将探讨数据分析实战案例的 ...
2024-12-03