富人发正品,穷人发A货,大数据售假是个什么鬼
前段时间曝光的一系列杀熟事件似乎给大数据头顶压上不轻的一座大山。接踵而来的讽刺段子堪比现在刷屏朋友圈的菊言菊语。
雷锋网编辑在“如何看待大数据杀熟”的知乎问题下,却看到了大数据的另一波骚操作——售假。
知友逻格斯写的一段关于大数据售假的内容获得了四百个赞,内容节选如下:
大数据杀熟算什么,你知道「大数据售假」吗?
某平台代购化妆品,对于 Dior、阿玛尼这些很贵的化妆品,会根据其掌握的买家的收入、消费状况进行细分:
A、如果系统判断你是个富人,平常一直用这个化妆品,就会给你发正品;
B、如果系统判断你是个穷人,买不起专柜里的化妆品,就会给你发 A 货,反正以你的消费水平你也没买过正品,更不知道什么是 A 货了。
更厉害的是,他们还「7 天无理由退货」,只要你敢申请他们就敢退。
那么退货率是多少呢?
2% 左右罢了。
这个场面是皆大欢喜的:
富人 A:23333 买到了便宜的粉底好开森。
穷人 B:23333 我也能用得起富人的粉底液了好开森。
穷人 C:诶,这个粉底液我用了起痘痘了,会不会是假货啊?
平台:小姐每个人的肤质不一样的,如果您不满意我们支持 7 天无理由退货。
穷人 C:啊?化妆品也还可以退货?好开森。
这样的场景无处不在,这一次的「杀熟」无非是击中了某些人脆弱的一面:我把你当兄弟,你居然想……?
抱歉,资本是不讲情义的,正如马克思所说的,如有 50% 的利润,它就铤而走险;为了 100% 的利润,它就敢践踏一切人间法律;有 300% 的利润,它就敢犯任何罪行,甚至绞首的危险。
什么什么,商家开始用大数据分析你的贫富状况并根据结果选择发A货还是真货了?前两天刚从某平台买了一堆化妆品的编辑感觉脸上一紧……
大数据为您一键细分,贴心服务
如果数据分析中心工作时候会说话,它可能的状态是:
哦上帝,看看这位女士前段时间都买了什么,XX、XX……好的相信我,她想要买的这瓶XX一定是她最近甚至是史上买过最贵的护肤品了,即使给她一瓶A货她也会用的很开心。
Amazing!这位女士一星期买了几万的美妆护肤品,我强烈建议给她划分至有钱人梯队,优先发货,从优发货。
……
当然以上情形只是想象,现实中大数据售假是怎么操作的?
邦盛科技副总经理孙斌杰告诉雷锋网,从理论上说,大数据售假主要利用的是数据爬取、采集和建模分析技术,通过把用户的职业、家庭收入、消费状况等各类数据,爬取和采集过来后,经过深度的清洗、加工后,通过关联分析等技术,建立相应的模型。简单说,就是对这个用户的经济收入、进行购买习惯和消费习惯等方面做一个用户画像,然后用设定的规则模型去套这个画像,画像跟哪类规则模型匹配,就采取类似的发货策略。
钱塘号曾概括过收到A货的人可能需要的特殊品质。比如购买能力,你在网上买件商品,订单提交后,系统会自动查询分析你在全平台的购物数据,如果你在同类产品消费倾向绝对大部分是低价位品牌,系统就判定你没用过高价位大牌真品,所以后台经分析后将你备注为低风险客户,给你发的货就容易是高仿货;
又比如收货习惯,其中退货少的人更容易买到假货,你的消费记录、购买记录、客单价记录将作为发货参考数据被系统识别。很多人有类似经历,买来的产品有小问题又不影响使用,怎么办?退货嫌麻烦,只有忍了。你如果真想退货,电商常常解释是因为发货前没有检查货品!
这显然是假话,因为每一批次的瑕疵品都有记录,之所以发给你,是因为你的综合退货率偏低而已,系统会自动认定你“好说话”、“能将就”,一有假货就优先“照顾”你。如果你收到货连看都不看,假货不给你给谁呢!
甚至收货地址也可能促使你买到假货。这并不是说二三四线城市就一定发假货。如果能识别收货手机与收货地址所在城市有没有产品专卖店。如果没有,你也没买过同类产品,系统会“放心”分配高仿货给你;如果有专卖店,系统会查询你是否买过同品牌产品。有消息透露,按此套路售卖高仿货,退货率还不到5%。
大数据真的售假了?还是过分解读
看完上述的售假事件,围观群众瑟瑟发抖,纷纷表示自己从没给过差评、没退过货、甚至买东西时都不会跟店主聊上一句。一但系统认为自己是个“没脾气的老好人”是不是就悲剧了?对方会故意给次品,故意把排后发货。
“所以以后我要多多退货、多多投诉。一但发现我被杀熟了,我就故意购物、故意退货、故意投诉、故意去举报。”某网友这么说道。
众多网友担心的情况会出现吗?
在孙斌杰看来,尽管从理论上分析大数据售假事件是可行的,但这种平台恶意行为并不常见。
因为这需要收集用户的多维度数据,同时进行相关的计算分析后,建立相应的规则模型。每次用户购买时,要启动相关的数据匹配后进行计算,查看是否与相应的规则模型匹配,才能确定发假货还是真货。、
这听起来容易,做起来却没那么容易,需要数据技术等支撑。一般商家没有能力也没有预算投入大数据分析。但随着互联网发展,不排除这类情况会增加。
“从某种层面上讲,大数据售假真实存在,通过大数据的能力把买卖双方串联起来,双方各取所需。但正如前面所说,我认为目前各类平台,不至于太多的存在专门投入相关经费整合数据,利用技术卖假的现象,这一说法有点过分解读。”
售假事件并非电商首创,类似事件一直存在。就算卖菜的小贩也会看人报价,只不过大数据可以把感性的“看人外表猜性格”替换成按数据了。
至于大数据售假到底存不存在?
电商那么多,一定有商家正在这样做,也一定有商家没想到可以这样。
而对于消费者,似乎只能更谨慎的网购,保护自己的各种数据不泄露了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29随着技术的飞速发展与行业的持续变革,不少人心中都存有疑问:到了 2025 年,数据分析师还有前途吗?给你分享一篇阿里P8大佬最近 ...
2024-12-29