别以为你是技术开发人员就可以不会大数据
要处理大数据,开发人员需要了解他们正在处理的业务问题,以及部署架构和数据。为了了解大数据,我们采访了21家公司的22位高管,他们正在帮助客户管理和优化他们的数据,以推动业务价值。我们的问题是:开发者在大数据项目上需要什么技能?以下是他们的的答案。
了解业务问题
1. 从数据中心的角度来看工作。你有什么数据、你想知道什么、你要怎么填补空白来解决问题?
2. 开发人员需要各种技能来处理大数据项目,其中包括以下三项至关重要的技能:A. 清楚地了解公司内部的业务目标范围,以及这些技术如何与各种技术保持一致。B. 在应用程序的中,开发人员需要了解他们正在处理的数据集的商业价值。C. 开发人员作为一个组织的一部分,需要有能够构建和管理一个应用程序的能力。
3. 了解用例并找出最佳解决方案堆栈。培养核心基础人才。理解数学结构、框架和模型。了解业务应用程序 ---如何将信息用于业务。有许多工具可以直观地减少初始难度。正如上述,技能的完美结合涉及统计、数学知识、数据建模经验、编程经验以及商业领域的敏锐度。尽管找到具有完美技能组合的个人(一名真正的数据科学家)是相当难得的,但某些工具集和系统可以减轻对编程经验的需求,帮助数据建模部分,甚至减少对深入了解预测背后的数学模型。
部署体系结构
1. 未来是AI / ML的,同时也别忘了微服务。在云中与AI / ML工具结合起来,这需要不同的、更大的愿景。
2. 了解云、微服务、本地分布和安全性。
3. 了解流行的开源系统的架构,跟上趋势。
4. 系统架构、软件工程、机器学习以及高级分析。
数据
1. 虽然开发人员掌握了开发流程,但为了扩展平台将会帮助理解Kafka。你不必手动完成所有的编码工作,将会有其他工具来消除连接性问题。
2. 利用数据结构来简化流程。使用数据作为容器和微服务的一般资源。智能制造更有针对性和反应性的过程。看质量问题和根本原因。让工作更容易,这样他们就能做出更多的贡献。
3. 集成资源来构建应用程序和推荐引擎。补充软件堆栈、ML库和计算资源。结构化数据,使其易于使用。
4. 拥抱非关系数据模型,如文档和半结构化。为了分析的目的,经常需要对数据进行非规范化处理。
5. 理解结构、维度和变量的基本数据词汇。了解一个给定的变量可以做什么样的分析。
6. 如何处理大规模的数据。多用户的并发性应用程序开发人员可以快速获取语言了解数据生态系统的工作原理。
7. 开发人员需要使用编程语言、概率和统计,应用数学和算法来获得机器学习的上升趋势。他们还需要了解数据的上下文,最终用户将如何使用数据,以及如何重用数据。他们需要考虑分布式计算和架构,将数据管理恰当地分离到不同的区域,以保持大数据架构的组织性,敏捷性和安全性。DevOps原则也需要被应用到。通过参与整个软件交付流程,数据专家可以帮助其他团队了解软件在生产中面临的数据挑战类型。
8. 数据工程和数据科学是一个大的分支。虽然对数据科学的基本知识只需要有所掌握,但对不同数据技术的深入了解却是必要的。尽管NoSQL很受欢迎,但SQL仍然是查询数据的标准。开发人员需要了解不同的部署选项——云本地、容器和流行的部署选项。对数据库和系统概念(如一致性保证、事务边界、系统体系结构、保证和职责等)的良好理解将帮助开发人员了解环境、对技术进行分类、并识别他们应该研究的技术。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20