引自百度:决策树算法是一种逼近离散函数值的方法。它是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程
决策树的算法原理:
(1)通过把实例从根节点开始进行排列到某个叶子节点来进行分类的。
(2)叶子节点即为实例所属的分类的,树上的每个节点说明了实例的属性。
(3)树的生成,开始的所有数据都在根节点上,然后根据你所设定的标准进行分类,用不同的测试属性递归进行数据分析。
决策树的实现主要思路如下:
(1)先计算整体类别的熵
(2)计算每个特征将训练数据集分割成的每个子集的熵,并将这个熵乘以每个子集相对于这个训练集的频率,最后将这些乘积累加,就会得到一个个特征对应的信息增益。
(3)选择信息增益最大的作为最优特征分割训练数据集
(4)递归上述过程
(5)递归结束条件:训练集的所有实例属于同一类;或者所有特征已经使用完毕。
代码如下:
[python] view plain copy
#!/usr/bin/python
#coding=utf-8
import operator
import math
#定义训练数据集
def createDataSet():
#用书上图8.2的数据
dataSet = [
['youth', 'no', 'no', 'no'],
['youth', 'yes', 'no', 'yes'],
['youth', 'yes', 'yes', 'yes'],
['middle_aged', 'no', 'no', 'no'],
['middle_aged', 'no', 'yes', 'no'],
['senior', 'no', 'excellent', 'yes'],
['senior', 'no', 'fair', 'no']
]
labels = ['age', 'student', 'credit_rating']
return dataSet, labels
#实现熵的计算
def calShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVect in dataSet:
currentLabel = featVect[-1]
if currentLabel not in labelCounts:
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key]) / numEntries
shannonEnt -= prob * math.log(prob, 2)
return shannonEnt
#分割训练数据集
def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet
#一个确定“最好地”划分数据元组为个体类的分裂准则的过程
def Attribute_selection_method(dataSet):
numFeatures = len(dataSet[0]) - 1
baseEntropy = calShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeature = -1
for i in range(numFeatures):
featList = [example[i] for example in dataSet]
uniqueValue = set(featList)
newEntropy = 0.0
for value in uniqueValue:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet) / len(dataSet)
newEntropy += prob * calShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy
if infoGain > bestInfoGain:
bestInfoGain = infoGain
bestFeature = i
return bestFeature
#采用majorityvote策略,选择当前训练集中实例数最大的类
def majorityCnt(classList):
classCount = {}
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
#创建决策树
def Generate_decision_tree(dataSet, labels):
classList = [example[-1] for example in dataSet]
# 训练集所有实例属于同一类
if classList.count(classList[0]) == len(classList):
return classList[0]
# 训练集的所有特征使用完毕,当前无特征可用
if len(dataSet[0]) == 1:
return majorityCnt(classList)
bestFeat = Attribute_selection_method(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel: {}}
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:]
myTree[bestFeatLabel][value] = Generate_decision_tree(splitDataSet(dataSet, bestFeat, value), subLabels)
return myTree
def main():
print ' ____ _ _ _____ '
print ' | _ \ ___ ___(_)___(_) ___ _ _|_ _| __ ___ ___ '
print ''''' | | | |/ _ \/ __| / __| |/ _ \| '_ \| || '__/ _ \/ _ \\'''
print ' | |_| | __/ (__| \__ \ | (_) | | | | || | | __/ __/'
print ' |____/ \___|\___|_|___/_|\___/|_| |_|_||_| \___|\___|决策树'
print
myDat, labels = createDataSet()
myTree = Generate_decision_tree(myDat, labels)
print '[*]生成的决策树:\n',myTree
if __name__ == '__main__':
main()
这里的数据也是使用书上的(《数据挖掘概念与技术 第三版》)。
运行结果:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30