计算广告:大数据变现的成功实践
近两年,大数据技术在越来越多的行业发挥了作用,计算广告是其中最成熟、市场规模最大的行业之一。将用户行为数据转化为可衡量的商业价值,在线广告创造了互联网行业大部分的营收。如何利用手中的大数据获取更大的利益也广告主和广告商所共同关心的问题。
9月19日,“计算力量改变世界”沙龙在北京科技寺举行。资深广告技术专家刘鹏、汽车之家广告算法经理王超、广告家Pro.cn产品经理李雪莱对这一问题进行了解答,就广告行业发展、广告技术和场景化营销进行了分享,并与数十位广告从业者就程序化购买的挑战和机遇进行了探讨。
网络广告高速发展 程序化购买潜力巨大
互联网广告兼具品牌和效果量方面的功能,更是具备传统广告所缺乏的大量投送和效果优化能力。最近几年的数据显示,网络广告的市场规模正在以惊人的速度发展。
2007年-2013年中美网络/电视广告市场规模折线图 (单位:亿美元)
数据来源:《计算广告》刘鹏 王超著
随着需求优化效果效果的进一步加强,普通的竞价广告模式已经不了市场需求的发展,以实时竞价为核心的程序化交易广告应运而生。资深广告技术专家刘鹏在“计算力量改变世界”沙龙上表示,面对千万网民反馈形成的快速变化的数据空间,程序化购买应用了大量信息检索、机器学习等计算分析技术,通过这些计算分析技术组成的计算平台,能实现实时判断消费者当下场景的潜在需求,然后推送基于该需要的广告内容。
基于大数据技术的程序化购买,做到深入挖掘用户需求和痛点,不仅实现千人千面的广告投放,更促使消费者主动选择广告主的解决方案。而这也吸引越来越多的媒体、网络入口也开始不断的将资源与程序化购买平台进行深度结合,以实现效率和效益的最大化。据艾瑞咨询发布的《中国程序化购买行业报告》显示,2015年中国的程序化购买市场规模有望达到100亿元。而从零起步到达到这一规模,仅仅使用了3年的时间。
刘鹏认为,计算分析技术已经开始改变甚至颠覆传统的广告营销方式,但是当前依然只是程序化购买的初期,各种计算技术、分析,还存在着巨大的提升价值,这让程序化购买在未来具有不可估量价值的同时,也对提供程序化购买服务的企业带来了不小的技术实力挑战。
DSP的未来在场景化营销 数据和技术是重要驱动
通过实时竞价的方式,按照定制化的人群标签购买广告,这样的产品即为需求方平台(Demand Slide Platform,DSP)。刘鹏认为目前各家DSP的差异并不明显,未来越深耕的平台机会越大。
对此,广告家Pro.cn产品经理李雪莱很是认同,他说,庞大而实时的大数据信息,结合先进科学的计算分析技术是决定程序化购买能否不断创造价值的关键。
李雪莱进一步表示,拥有数十万WAP、网吧、网站、App、软件以及机场、校园、咖啡厅、酒吧、酒店、餐饮等场景网络的广告家Pro.cn,独有场景媒体和场景化数据,通过不断完善机器学习、多维度信息检索等计算分析技术,能够良好分析出目标用户营销价值,再根据人群、场景、时间段进行多维度匹配,由此为广大企业和品牌广告主提供快速、高效的场景营销,实现将广告与目标受众精确匹配。
据了解,广告家Pron.cn通过AdPro场景营销自助平台(DSP)、DataPro场景数据服务平台(DMP)的完整场景营销服务生态,目前可触达独立用户高达1.5亿,日流量PV更是超过5.5亿。而广告家Pro.cn最新的DSP 3.0也将于10月推出,新产品特有场景轨迹技术,让广告主可以自由选择覆盖场景范围。
程序化购买有两大最为核心的指标,一是庞大而实时的数据库作为支撑,二是先进科学的计算分析技术。随着市场的趋向成熟,计算技术的竞争比重会越来越大。除了基本的机器学习,包括近来兴起的深度学习,信息检索、博弈论,以及强化学习的等诸多计算技术和理论,都会成为提升程序化购买应用范围和竞争力的组成部分。
届时,程序化购买也将开始新的一轮优胜劣汰,并推动市场整体实现从数据到计算技术竞争,再到数据竞争的螺旋式增长。“广告发展驱动力就是数据利用的广度和深度,当数据利用无法满足广告时,就会推动技术和计算的提升。”
数据分析咨询请扫描二维码
在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28