
最近自己对机器学习比较感兴趣,做个笔记,还请大牛不喜轻喷,多多指教。
朴素贝叶斯分类基于概率论中的贝叶斯原理:
P(A|B) = P(B|A)*P(A)/P(B)
所谓朴素即是特征属性之间相互独立的对分类结果发生影响。
所以对应的概率公式可改写为P(c|x) = P(x|c)|p(c) / P(x)
其中:
P(c) 是类‘先验概率’
P(x|c) 是样本x对于类标记c的类条件概率(或称似然)
P(x)叫做证据因子
由于朴素贝叶斯假定所有特征属性独立,所以
P(x|c)= P(x1,x2,…xn|c) = P(x1|c)P(x2|c) …P(xn|c)
P(x) = P(x1) * P(x2) * … * P(xn)
所以
P(c|x) = P(x1,x2,…xn|c) = P(x1|c)P(x2|c) …P(xn|c) * P(c) /
p(x)。 因为 P(c) / p(x)是固定值,所以我们一般只需要计算P(x|c),找出最大似然即可
Ps:
对于离散属性而言,P(x1|c) = 训练集中属性为x1且分类为c的数目|训练集中分类c的数目
对于离散属性而言,一般假定其概率分布为高斯分布
取个例1:
症状 职业 疾病
打喷嚏 护士 感冒
打喷嚏 农夫 过敏
头痛 建筑工人 脑震荡
头痛 建筑工人 感冒
打喷嚏 教师 感冒
头痛 教师 脑震荡
现在又来了是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?
由上可知
求P(感冒|打喷嚏建筑工人) = P(建筑工人|感冒) P(打喷嚏|感冒) * P(感冒) / P(建筑工人) * P(打喷嚏)
P(建筑工人|感冒) = 1/3
P(打喷嚏|感冒) = 2/3
P(感冒) = 3/6 = 1/2
P(建筑工人) = 2/6 = 1/3
P(打喷嚏) = 3/6 = 1/2
所以
P(感冒|打喷嚏*建筑工人) = (1/3 * 2/3 * 1/2 ) / (1/3 * 1/2) = 2/3
再取个例2(来自机器学习(周志华)):
我们要求一个:
根据朴素贝叶斯定理:
我们有
P(好瓜=是|色泽=青绿,根蒂=蜷缩,敲声=浊响,纹理=清晰,脐部=凹陷,触感=硬滑,密度=0.697,含糖率=0.46) =
P(色泽=青绿|好瓜=是) * P(根蒂=蜷缩|好瓜=是) * P(敲声=浊响|好瓜=是) * P(纹理=清晰|好瓜=是) *
P(脐部=凹陷|好瓜=是) * P(触感=硬滑|好瓜=是) * P(密度=0.697|好瓜=是) * P(含糖率=0.46|好瓜=是) *
P(好瓜=是) / (P(色泽=青绿) * P(根蒂=蜷缩) * P(敲声=浊响) * P(纹理=清晰) * P(脐部=凹陷)
* P(触感=硬滑) * P(密度=0.697) * P(含糖率=0.46))
P(好瓜=是) = 8/17
P(色泽=青绿|好瓜=是) = 3/8
…
(好瓜=是的瓜密度均值为0.574, 方差 = 0.129)
P(色泽=青绿|好瓜=是) = exp(-(0.697-0.574)^2 / 2*0.129)) / sqrt((2*π)*0.129) ≈ 1.959
…
结果P(好瓜=是|色泽=青绿,根蒂=蜷缩,敲声=浊响,纹理=清晰,脐部=凹陷,触感=硬滑,密度=0.697,含糖率=0.46) = 0.038
同理
P(好瓜=否|色泽=青绿,根蒂=蜷缩,敲声=浊响,纹理=清晰,脐部=凹陷,触感=硬滑,密度=0.697,含糖率=0.46) =0.000068
所以分类到好瓜中。
特别的,如果样本中有,但是训练集中没有,这样就有可能导致分类不合理。
例如在例1 中 如果样本中出现职业一个打喷嚏的学生,那么最后算出来的结果,P(感冒|打喷嚏*学生) = 0,很明显是不对的。
拉普拉斯修正修正原理很简单:设Ni对于分类为c第i个特征属性的可能取到的类别数目
,那么:
P(xi|c) =( |Dc,xi|+1) / (|Dc|+Ni )
其中 |Dc,xi| 表示训练集中分类为c的特征属性为xi的数目, |Dc| 表示训练集中分类为c的数目。
在例1 经过修正后
P(建筑工人|感冒) = (1+1)/(3+4) = 2/7
P(打喷嚏|感冒) = (2+1)/(3+2) =3/5
P(感冒) = 3/6 = 1/2
P(建筑工人) = 2/6 =1/3
P(打喷嚏) = 3/6 = 1/2
P(感冒|打喷嚏建筑工人) = P(建筑工人|感冒)P(打喷嚏|感冒) * P(感冒) / P(建筑工人) * P(打喷嚏) = (2/7 * 3/71/2) / (1/31/2) = 2/35
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20