大数据发展趋势推动渠道未来技术和服务
在大数据时代,最受渠道欢迎的两大技术就是存储和备份,包括产品和服务。企业利用这些设备和技术可确保在需要的时候完成关键任务,归档和数据非结构化处理。但这些技术存在的问题是,他们中保存的数据是无益的。
换句话说:存储数据使企业花钱且徒劳。
进入大数据时代,很多供应商充分利用大数据趋势将竞争产品和服务推向市场。有人说,大数据只是一个重新包装的数据挖掘和商业智能分析,在一定程度上,这是真的。这也反映出企业不能再承受闲置数据的成本。
处理数据已经是一门大生意。根据德勤数据显示,企业软件销售总额今年将超过270亿美元,大约有四分之一来自于大数据,企业资源管理和商业智能。
大数据的目标相对简单:充分利用存储数据中被闲置的、非收益性质的数据来预测业务发展趋势,发掘新的机遇,并推动更高水平的销售。此外,大数据是更多是降低风险,同时使企业管理者更好地了解他们的经营环境以做出更明智准确的业务决策。
解决方案供应商可能会认为大数据是专向大型企业,学术机构和政府机构的。在今天,这个假设可能是正确的。然而,供应商,包括IBM,甲骨文公司和微软公司都在用装置和应用程序推动商业分析和大数据进一步下沉市场,使处理数据和大量生产可操作情报成为一项简单工作。
大数据即大商机。如今占据市场领先端位的是“大数据波”,它的影响力范围和潜力甚至会超过云计算。在渠道方面,大数据的产品销售,专业服务和价值主张将产生深远的影响。以下五个大数据的发展趋势,将对渠道在未来十年的技术和服务销售形成推动:
1、数据整合,重组和清理手段
任何人在处理数据和分析数据之前,他们必须有正确的数据且知其所在。听起来很合理的,对不对?不幸的是,存储的数据看起来像成堆的报纸和空箱子上一集“囤积”的构造。所以大数据销售始于帮助企业识别数据,消除冗余,优化文件系统,并确保可分析在哪里可以找到信息。如果没有数据,将没有分析。
2、硬件销售将渠道导向大数据
看上去似乎大数据在最初推动更多的将是硬件销售。对大容量的非结构化数据进行分析是处理力,存储容量和I /
O速度的一个因素。解决方案供应商可能会发现企业 -
尤其是大企业–对可以处理大数据负载的高性能设备或集群服务器求之若渴。即使大数据作为云服务提供,这也将需要在大量新的硬件上运行所有分析工作的负载。
3、存储和商业智能将合并
存储和备份供应商通常爱讨论其性能,对信息的保护和利用力。存储是关于容量和管理效率,毕竟,存储和备份供应商及云文件共享服务正在发展存储行业以达成合作或提供大数据产品和服务。他们认识到单凭数据不再能坐的稳牢,开始计划巩固并提升他们目前作为大型数据存储库供应商的地位,使现有存储业成为诞生新一代大数据的基础。这将极大地改变存储厂商性质和他们的渠道架构。
4、对安全的需求将拉动大数据的增长
在当今的云和分布式企业时代,真正的大数据需要开放的数据存储以适应越来越多的内部组成,应用程序,托管资源和第三方专家。随着越来越多的人和自动化资源接触到数据,那么安全风险和漏洞将会激增,则与大数据相关的安全需求将同步增长,提供访问控制,身份认证,数据加密,入侵预防,审计和调整等服务。目前,安全技术的需求已随云计算的成长在增加。未来几年内,大数据亦将成为促进安全技术及专业支持的催化剂,预计这将在安全市场上有100万美元以上的空间。
5、商业管理“成为一种服务”
大数据是关乎商业,更具体地说,是关乎管理 - 前GE
CEO杰克@韦尔奇有一段着名的引述说,“不可测量则不能管理”.大数据则有着超越测量,且完成预测分析的更佳表现。大企业的通过自己进行这类业务来展示技术和能力是受限的。在今天,他们对分析师和定量专家进行投资;明天,他们将由对技术和分析的需求转向IT解决方案供应商。那么,解决方案的供应商通过其提供大数据预测分析,降低经营风险的专业服务,在未来十年中将开拓一个利润丰厚的市场。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20