SPSS—二元Logistic回归结果分析
1: 在“案例处理汇总”中可以看出:选定的案例 489 个,未选定的案例 361 个,这个结果是根据设定的 validate = 1
得到的,在“因变量编码”中可以看 出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替, 在“分 类变量编码”中教育水平分为 5
类, 如果选中“为完成高中,高中,大专,大 学等,其中的任何一个,那么就取值为 1,未选中的为 0,如果四个都未被选中, 那么就是”研究生“
频率分别代表了处在某个教育水平的个数,总和应该为 489 个
1:在“分类表”中可以看出: 预测有 360 个是“否”(未违约)
有 129 个是 “是”(违约) 2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B 为 -1.026,
标准误差为:0.103 那么 wald =( B/S.E)?=(-1.026/0.103)? = 99.2248, 跟表中的“100.029
几乎 接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小, B 和 Exp(B) 是对数关系,将 B
进行对数抓换后,可以得到:Exp(B) = e^-1.026 = 0.358, 其中自由度为 1, sig 为 0.000,非常显著
1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模 型,其它变量都不在最初模型内 表中分别给出了,得分,df , Sig 三个值, 而其中得分(Score)计算公式如下:
(公式中 (Xi- X?) 少了一个平方)
下面来举例说明这个计算过程:(“年龄”自变量的得分为例)
从“分类表”中可以看出:有 129 人违约,违约记为“1” 129, 选定案例总和为 489 那么: y? = 129/489 =
0.2638036809816 x? = 16951 / 489 = 34.664621676892 所以:∑(Xi-x?)? =
30074.9979 y?(1-y?)=0.2638036809816 *(1-0.2638036809816 ) 则 违约总和为
=0.19421129888216 则:y?(1-y?)* 840.9044060372 ∑(Xi-x?)? =0.19421129888216 * 30074.9979 = 5
则:[∑Xi(yi - y?)]^2 = 43570.8 所以:
=43570.8 / 5 840.9044060372 = 7.4595982010876 = 7.46 (四舍五入)
计算过程采用的是在 EXCEL 里面计算出来的,截图如下所示:
从“不在方程的变量中”可以看出,年龄的“得分”为 7.46,刚好跟计算结果 吻合!!答案得到验证~!!!!
1:从“块
1” 中可以看出:采用的是:向前步进 的方法, 在“模型系数的综 合检验”表中可以看出: 所有的 SIG 几乎都为“0” 而且随着模型的逐渐步
进,卡方值越来越大,说明模型越来越显著,在第 4 步后,终止, 根据设定的显著性值 和 自由度,可以算出 卡方临界值, 公式为:
=CHIINV(显著性值,自由度) ,放入 excel 就可以得到结果 2:在“模型汇总“中可以看出:Cox&SnellR 方 和
Nagelkerke R 方 拟合效果 都不太理想,最终理想模型也才:0.305 和 0.446, 最大似然平方的对数值 都比较大,明显是显著的
似然数对数计算公式为:
计算过程太费时间了,我就不举例说明
计算过程了 Cox&SnellR 方的计算值 是根据: 1:先拟合不包含待检验因素的 Logistic 模型,求对数似然函数值
INL0 (指只包含“常数项”的检验) 2:再拟合包含待检验因素的 Logistic 模型,求新的对数似然函数值 InLB (包含自变量的检验)
再根据公式: 值!
即可算出:Cox&SnellR 方的
提示:
将 Hosmer 和 Lemeshow 检验 和“随机性表” 结合一起来分析 1:从 Hosmer 和 Lemeshow
检验表中,可以看出:经过 4 次迭代后,最终的卡 方统计量为:11.919, 而临界值为:CHINV(0.05,8) = 15.507
卡方统计量< 临界值,从 SIG 角度来看: 0.155 > 0.05 , 说明模型能够很好 的拟合整体,不存在显著的差异。 2:从
Hosmer 和 Lemeshow 检验随即表中可以看出: ”观测值“和”期望值 “几乎是接近的, 不存在很大差异,
说明模型拟合效果比较理想, 印证了“Hosmer 和 Lemeshow 检验”中的结果 而“Hosmer 和 Lemeshow
检验”表中的“卡方”统计量,是通过“Hosmer 和 Lemeshow 检验随即表”中的数据得到的(即通过“观测值和”预测值“)得到
的,计算公式如下所示:
x?(卡方统计量) =
∑(观测值频率- 预测值频率)^2 / 预测值的频率
举例说明一下计算过程:以计算 "步骤 1 的卡方统计量为例 " 1:将“Hosmer 和 Lemeshow 检验随即表”中“步骤 1 ” excel 中,得到如下所示结果: 的数据,复制到
从“Hosmer 和 Lemeshow 检验”表中可以看出, 步骤 1 的卡方统计量为: 7.567, 在上图中,通过 excel 计算得到,结果为 7.566569 ~~7.567 (四舍 五入),结果是一致的,答案得到验证!!
1:
从“分类表”—“步骤 1” 中可以看出: 选定的案例中, “是否曾今违约” 总计:489 个,其中 没有违约的 360 个,并且对 360
个“没有违约”的客户进 行了预测, 340 个预测成功, 个预测失败, 有 20 预测成功率为: / 360 =94.4% 340
其中“违约”的有 189 个,也对 189 个“违约”的客户进行了预测,有 95 个 预测失败, 34 个预测成功,预测成功率:34 / 129
= 26.4% 总计预测成功率:(340 + 34)/ 489 = 76.5% 步骤 1 的 总体预测成功率为: 76.5%, 在步骤 4
终止后, 总体预测成功率为: 83.4, 预测准确率逐渐提升 76.5%—79.8%—81.4%—83.4。 83.4 的预测准确率,
不能够算太高,只能够说还行。
从“如果移去项则建模”表中可以看出:“在-2 对数似然中的更改” 中的数值 是不是很眼熟???,跟在“模型系数总和检验”表中“卡方统计量"量的值是 一样的!!!
将“如果移去项则建模”和
“方程中的变量”两个表结合一起来看 1: 在“方程中的变量”表中可以看出: 在步骤 1 中输入的变量为“负债率” ,
在”如果移去项则建模“表中可以看出,当移去“负债率”这个变量时,引起了 74.052 的数值更改,此时模型中只剩下“常数项”-282.152
为常数项的对数似 然值 在步骤 2 中,当移去“工龄”这个自变量时,引起了 44.543 的数值变化(简 称:似然比统计量),在步骤 2
中,移去“工龄”这个自变量后,还剩下“负债 率”和“常量”,此时对数似然值 变成了:-245.126,此时我们可以通过公式
算出“负债率”的似然比统计量:计算过程如下: 似然比统计量 = 2(-245.126+282.152)=74.052 答案得到验证!!!
2:在“如果移去项则建模”表中可以看出:不管移去那一个自变量,“更改的 显著性”都非常小,几乎都小于 0.05,所以这些自变量系数跟模型显著相关, 不能够剔去!! 3:根据" 方程中的变量“这个表,我们可以得出 logistic 回归模型表达式:
= =
1 / 1+ e^-(a+∑βI*Xi)
我们假设 Z
么可以得到简洁表达式:
P(Y)
= 1 / 1+e^ (-z) 将”方程中的变量“ —步骤 4 中的参数代入 模型表达式中,可以得 到 logistic 回归 模型
如下所示: P(Y) = 1 / 1 + e ^ -(-0.766+0.594*信用卡负债率+0.081*负债率-0.069*地
址-0.249*功龄)
从”不在方程中的变量“表中可以看出: 年龄,教育,收入,其它负债,都没 有纳入模型中,其中:sig 值都大于 0.05,所以说明这些自变量跟模型显著不 相关。
在”观察到的组和预测概率图”中可以看出:
1:the Cut Value is 0.5, 此处以 0.5 为切割值,预测概率大于 0.5,表示 客户“违约”的概率比较大,小于 0.5
表示客户“违约”概率比较小。 2: 从上图中可以看出:预测分布的数值基本分布在“左右两端”在大于 0.5 的切割值中,大部分都是“1”
表示大部分都是“违约”客户,( 大约 230 个 违约客户) 预测概率比较准,而在小于 0.5 的切割值中,大部分都是“0” 大
部分都是“未违约”的客户,(大约 500 多个客户,未违约) 预测也很准
在运行结束后,会自动生成多个自变量,如下所示:
1:从上图中可以看出,已经对客户“是否违约”做出了预测,上面用颜色标记
的部分-PRE_1 表示预测概率, 上面的预测概率,可以通过 前面的 Logistic 回归模型计算出来,计算过程不 演示了 2:
COOK_1 和 SRE_1 的值可以跟 预测概率 (PRE_1) 进行画图, 来看 COOK_1 和 SRE_1 对预测概率的影响程度,因为
COOK 值跟模型拟合度有一定的关联,发生 奇异值,会影响分析结果。如果有太多奇异值,应该单独进行深入研究!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31