SPSS—二元Logistic回归结果分析
1: 在“案例处理汇总”中可以看出:选定的案例 489 个,未选定的案例 361 个,这个结果是根据设定的 validate = 1
得到的,在“因变量编码”中可以看 出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替, 在“分 类变量编码”中教育水平分为 5
类, 如果选中“为完成高中,高中,大专,大 学等,其中的任何一个,那么就取值为 1,未选中的为 0,如果四个都未被选中, 那么就是”研究生“
频率分别代表了处在某个教育水平的个数,总和应该为 489 个
1:在“分类表”中可以看出: 预测有 360 个是“否”(未违约)
有 129 个是 “是”(违约) 2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B 为 -1.026,
标准误差为:0.103 那么 wald =( B/S.E)?=(-1.026/0.103)? = 99.2248, 跟表中的“100.029
几乎 接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小, B 和 Exp(B) 是对数关系,将 B
进行对数抓换后,可以得到:Exp(B) = e^-1.026 = 0.358, 其中自由度为 1, sig 为 0.000,非常显著
1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模 型,其它变量都不在最初模型内 表中分别给出了,得分,df , Sig 三个值, 而其中得分(Score)计算公式如下:
(公式中 (Xi- X?) 少了一个平方)
下面来举例说明这个计算过程:(“年龄”自变量的得分为例)
从“分类表”中可以看出:有 129 人违约,违约记为“1” 129, 选定案例总和为 489 那么: y? = 129/489 =
0.2638036809816 x? = 16951 / 489 = 34.664621676892 所以:∑(Xi-x?)? =
30074.9979 y?(1-y?)=0.2638036809816 *(1-0.2638036809816 ) 则 违约总和为
=0.19421129888216 则:y?(1-y?)* 840.9044060372 ∑(Xi-x?)? =0.19421129888216 * 30074.9979 = 5
则:[∑Xi(yi - y?)]^2 = 43570.8 所以:
=43570.8 / 5 840.9044060372 = 7.4595982010876 = 7.46 (四舍五入)
计算过程采用的是在 EXCEL 里面计算出来的,截图如下所示:
从“不在方程的变量中”可以看出,年龄的“得分”为 7.46,刚好跟计算结果 吻合!!答案得到验证~!!!!
1:从“块
1” 中可以看出:采用的是:向前步进 的方法, 在“模型系数的综 合检验”表中可以看出: 所有的 SIG 几乎都为“0” 而且随着模型的逐渐步
进,卡方值越来越大,说明模型越来越显著,在第 4 步后,终止, 根据设定的显著性值 和 自由度,可以算出 卡方临界值, 公式为:
=CHIINV(显著性值,自由度) ,放入 excel 就可以得到结果 2:在“模型汇总“中可以看出:Cox&SnellR 方 和
Nagelkerke R 方 拟合效果 都不太理想,最终理想模型也才:0.305 和 0.446, 最大似然平方的对数值 都比较大,明显是显著的
似然数对数计算公式为:
计算过程太费时间了,我就不举例说明
计算过程了 Cox&SnellR 方的计算值 是根据: 1:先拟合不包含待检验因素的 Logistic 模型,求对数似然函数值
INL0 (指只包含“常数项”的检验) 2:再拟合包含待检验因素的 Logistic 模型,求新的对数似然函数值 InLB (包含自变量的检验)
再根据公式: 值!
即可算出:Cox&SnellR 方的
提示:
将 Hosmer 和 Lemeshow 检验 和“随机性表” 结合一起来分析 1:从 Hosmer 和 Lemeshow
检验表中,可以看出:经过 4 次迭代后,最终的卡 方统计量为:11.919, 而临界值为:CHINV(0.05,8) = 15.507
卡方统计量< 临界值,从 SIG 角度来看: 0.155 > 0.05 , 说明模型能够很好 的拟合整体,不存在显著的差异。 2:从
Hosmer 和 Lemeshow 检验随即表中可以看出: ”观测值“和”期望值 “几乎是接近的, 不存在很大差异,
说明模型拟合效果比较理想, 印证了“Hosmer 和 Lemeshow 检验”中的结果 而“Hosmer 和 Lemeshow
检验”表中的“卡方”统计量,是通过“Hosmer 和 Lemeshow 检验随即表”中的数据得到的(即通过“观测值和”预测值“)得到
的,计算公式如下所示:
x?(卡方统计量) =
∑(观测值频率- 预测值频率)^2 / 预测值的频率
举例说明一下计算过程:以计算 "步骤 1 的卡方统计量为例 " 1:将“Hosmer 和 Lemeshow 检验随即表”中“步骤 1 ” excel 中,得到如下所示结果: 的数据,复制到
从“Hosmer 和 Lemeshow 检验”表中可以看出, 步骤 1 的卡方统计量为: 7.567, 在上图中,通过 excel 计算得到,结果为 7.566569 ~~7.567 (四舍 五入),结果是一致的,答案得到验证!!
1:
从“分类表”—“步骤 1” 中可以看出: 选定的案例中, “是否曾今违约” 总计:489 个,其中 没有违约的 360 个,并且对 360
个“没有违约”的客户进 行了预测, 340 个预测成功, 个预测失败, 有 20 预测成功率为: / 360 =94.4% 340
其中“违约”的有 189 个,也对 189 个“违约”的客户进行了预测,有 95 个 预测失败, 34 个预测成功,预测成功率:34 / 129
= 26.4% 总计预测成功率:(340 + 34)/ 489 = 76.5% 步骤 1 的 总体预测成功率为: 76.5%, 在步骤 4
终止后, 总体预测成功率为: 83.4, 预测准确率逐渐提升 76.5%—79.8%—81.4%—83.4。 83.4 的预测准确率,
不能够算太高,只能够说还行。
从“如果移去项则建模”表中可以看出:“在-2 对数似然中的更改” 中的数值 是不是很眼熟???,跟在“模型系数总和检验”表中“卡方统计量"量的值是 一样的!!!
将“如果移去项则建模”和
“方程中的变量”两个表结合一起来看 1: 在“方程中的变量”表中可以看出: 在步骤 1 中输入的变量为“负债率” ,
在”如果移去项则建模“表中可以看出,当移去“负债率”这个变量时,引起了 74.052 的数值更改,此时模型中只剩下“常数项”-282.152
为常数项的对数似 然值 在步骤 2 中,当移去“工龄”这个自变量时,引起了 44.543 的数值变化(简 称:似然比统计量),在步骤 2
中,移去“工龄”这个自变量后,还剩下“负债 率”和“常量”,此时对数似然值 变成了:-245.126,此时我们可以通过公式
算出“负债率”的似然比统计量:计算过程如下: 似然比统计量 = 2(-245.126+282.152)=74.052 答案得到验证!!!
2:在“如果移去项则建模”表中可以看出:不管移去那一个自变量,“更改的 显著性”都非常小,几乎都小于 0.05,所以这些自变量系数跟模型显著相关, 不能够剔去!! 3:根据" 方程中的变量“这个表,我们可以得出 logistic 回归模型表达式:
= =
1 / 1+ e^-(a+∑βI*Xi)
我们假设 Z
么可以得到简洁表达式:
P(Y)
= 1 / 1+e^ (-z) 将”方程中的变量“ —步骤 4 中的参数代入 模型表达式中,可以得 到 logistic 回归 模型
如下所示: P(Y) = 1 / 1 + e ^ -(-0.766+0.594*信用卡负债率+0.081*负债率-0.069*地
址-0.249*功龄)
从”不在方程中的变量“表中可以看出: 年龄,教育,收入,其它负债,都没 有纳入模型中,其中:sig 值都大于 0.05,所以说明这些自变量跟模型显著不 相关。
在”观察到的组和预测概率图”中可以看出:
1:the Cut Value is 0.5, 此处以 0.5 为切割值,预测概率大于 0.5,表示 客户“违约”的概率比较大,小于 0.5
表示客户“违约”概率比较小。 2: 从上图中可以看出:预测分布的数值基本分布在“左右两端”在大于 0.5 的切割值中,大部分都是“1”
表示大部分都是“违约”客户,( 大约 230 个 违约客户) 预测概率比较准,而在小于 0.5 的切割值中,大部分都是“0” 大
部分都是“未违约”的客户,(大约 500 多个客户,未违约) 预测也很准
在运行结束后,会自动生成多个自变量,如下所示:
1:从上图中可以看出,已经对客户“是否违约”做出了预测,上面用颜色标记
的部分-PRE_1 表示预测概率, 上面的预测概率,可以通过 前面的 Logistic 回归模型计算出来,计算过程不 演示了 2:
COOK_1 和 SRE_1 的值可以跟 预测概率 (PRE_1) 进行画图, 来看 COOK_1 和 SRE_1 对预测概率的影响程度,因为
COOK 值跟模型拟合度有一定的关联,发生 奇异值,会影响分析结果。如果有太多奇异值,应该单独进行深入研究!
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20