大数据时代下的迁移学习
迁移学习不是机器学习的一个模型或技术,它是机器学习中的一种“设计方法论”,还有一些其他的设方法论,比如说主动学习。
本文是AI科技大本营编译的迁移学习系列的第一篇文章。第二篇文章也会在近期放送给大家,其中讨论了迁移学习的两种应用。
在后续的文章中,作者将解释如何结合主动学习与迁移学习来最优地利用现有(或者新的)数据。 从广义上说,在利用外部信息来提高性能或泛化能力时,可以使用迁移学习来实现一些机器学习的应用。
▌迁移学习的定义
迁移学习的总体思路是:对于带大量标签数据及可用参数设置的源任务,迁移已学习的知识,处理带少量标签的目标任务。因为标记数据的成本是昂贵的,最佳地利用现有数据集来解决目标任务是关键。
在传统的机器学习模型中,主要目标是将训练数据中学习到的模式,推广到未知的数据。 通过迁移学习,你可以尝试从已经学习的任务模式开始,启动这个泛化过程。本质上,这不是从无到有地(通常是随机初始化的)开始学习过程,而是在学会了其他任务模式的基础上开始学习新任务。
能够从图像中区分线条和形状(左),这些特征能够更容易确定图中是否是“汽车”。可以运用迁移学习来学习其他计算机视觉模型中的模式,而不必从图像的原始像素值开始。
存在不同的方法来表示自然语言中的单词(词嵌入像左、右侧的词表示)。借助词嵌入算法,机器学习模型就可以利用不同单词之间存在的关系。
知识和模式的迁移在各种领域都是有可能实现的。这篇文章将通过几个不同领域的例子来说明迁移学习是如何工作的。我们的目标是鼓励数据科学家在机器学习项目中使用迁移学习,并让他们意识到这种方法的优缺点。
对于迁移学习的理解,以下这三个方面是我认为数据科学家都应具备的关键技能:
在任何一种学习模式中,迁移学习的应用都是至关重要的。为了获得成功,人类不可能学习到每一个任务或问题。每个人都会遇到从未遇到过的情况,但我们仍然希望以特殊的方式解决问题。从大量的经验中学习,并将“知识”转移到新环境中的能力正是迁移学习的关键所在。从这个角度来看,迁移学习和泛化能力在概念层面上是非常相似的。它们的主要区别在于迁移学习经常被用于“跨任务迁移知识,而不是在一个特定的任务中进行概括”。因此,迁移学习与所有机器学习模型所必需的泛化能力概念有着内在联系。
对于小数据量情况下深度学习技术,应用迁移学习是取得成功的关键。在实际研究中,深度学习几乎是无处不在,但是对于很多现实生活场景来说,通常都没有数百万个带标签的数据来训练模型。而深度学习技术需要大量的数据来调整神经网络中的数百万个参数,特别是在监督式学习的情况下。这就意味着你需要大量带标签数据来训练模型,而标注数据则需要昂贵的人工成本。标记图像听起来很平常的,但是在诸如自然语言处理(NLP)任务中,需要专家知识才能创建大型标记数据集。例如,Penn treebank是一个词性标注语料库,至今已有7年的历史了,它需要与多位语言学专家的密切合作才能完成。为保证小数据量上的神经网络能够正常运行,迁移学习是一种可行的方法。而其他可行的选择正朝着更多概率启发的模式发展,这些模式通常更适合处理有限的小数据集。
迁移学习有着显著的优点和缺点。了解这些缺点对于机器学习应用程序的成功是至关重要。知识迁移只有在“适当”的情况下才有可能。这种情况下,确切地定义“适当”的概念是不容易的,需要点经验知识来帮助确定。例如,你不应该相信一个在玩具车里开车的孩子能够开上法拉利。迁移学习的原理也是一样的:虽然它很难被量化,但迁移学习也是有上限的,也就是说它不是一个适合所有问题的解决方案。
▌迁移学习的一般概念
迁移学习的要求
正如它的名字,迁移学习需要将知识从一个领域迁移到另一个领域的能力。通常,迁移学习可以在高层级上进行解释。例如,自然语言处理任务中的体系结构可以在序列预测问题中重复使用,因为很多自然语言处理问题本质上都可以归结为序列预测问题。迁移学习也可以在低层级上进行解释,例如在实际中你经常会重复使用不同模型中的参数(跳过词组,连续词袋等)。迁移学习的要求,一方面是针对具体的问题而定,另一方面则是由具体的模型决定。接下来的两节将分别讨论迁移学习在高层级和低层级的应用方法。尽管在文献中通常会用不同的名字来阐述这些概念,但是迁移学习的总体概念仍然存在。
多任务学习
在多任务学习中,你可以同时在不同的任务上训练模型,通常这些都是深度学习模型,因为它们可以灵活地进行调整。
网络体系结构是这样调整的:第一层跨越不同的任务使用,随后为不同的任务指定特定的任务层和输出。总体的思路是,通过对不同任务的网络进行训练,网络将更好地推广,因为模型需要在相似的“知识”或“处理”任务上表现良好。
例如,自然语言处理任务的最终目标是执行实体识别的模型,而不是在实体识别任务纯粹地训练模型。你还用它来处理一部分语音分类,词语联想等任务......因此,模型将从不用的结构、不同的任务和不同的数据集的学习中获益。如果你想学习更多关于多任务学习的内容,强烈建议你阅读Sebastian Ruder的关于多任务学习的博文(http://ruder.io/multi-task/)。
▌特征提取
深度学习模型的一大优点是能够“自动化”地提取特征。基于标记的数据和反向传播法则,网络能够捕捉到对任务有用的特征。例如,对于图像分类任务,网络会计算出输入的哪一部分是重要的。这意味着手动定义的特征是很抽象的,而深度神经网络学习到的特征可以在其他问题中重复地使用。因为网络所提取的特征类型,常常对其他问题也是有用。本质上,你可以使用网络的第一层来确定有用的特征,但是你不能在其他任务上使用网络的输出,因为这些输出是针对特定任务的。
考虑到深度学习系统强大的特征提取能力,如何重复使用现有网络来执行其他任务的特征提取?
这里有一个方法,可以将新的数据样本馈送到网络中,并将网络中的一个中间层作为输出。这个中间层可以被设置为一个固定的长度,来表示原始数据的输出。特别地,在计算机视觉领域使用图像特征,馈送到预训练好的网络(例如,VGG或AlexNet),并在新的数据表示上使用不同的机器学习方法。提取中间层作为图像的表示能够显著地减少了原始数据大小,以便它们更适合于传统的机器学习技术(例如,对于一个128×128的小图像:大小为128x128=16384像素,逻辑回归算法或支持向量机通常有更好的算法性能)。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20