大数据时代下的迁移学习
迁移学习不是机器学习的一个模型或技术,它是机器学习中的一种“设计方法论”,还有一些其他的设方法论,比如说主动学习。
本文是AI科技大本营编译的迁移学习系列的第一篇文章。第二篇文章也会在近期放送给大家,其中讨论了迁移学习的两种应用。
在后续的文章中,作者将解释如何结合主动学习与迁移学习来最优地利用现有(或者新的)数据。 从广义上说,在利用外部信息来提高性能或泛化能力时,可以使用迁移学习来实现一些机器学习的应用。
▌迁移学习的定义
迁移学习的总体思路是:对于带大量标签数据及可用参数设置的源任务,迁移已学习的知识,处理带少量标签的目标任务。因为标记数据的成本是昂贵的,最佳地利用现有数据集来解决目标任务是关键。
在传统的机器学习模型中,主要目标是将训练数据中学习到的模式,推广到未知的数据。 通过迁移学习,你可以尝试从已经学习的任务模式开始,启动这个泛化过程。本质上,这不是从无到有地(通常是随机初始化的)开始学习过程,而是在学会了其他任务模式的基础上开始学习新任务。
能够从图像中区分线条和形状(左),这些特征能够更容易确定图中是否是“汽车”。可以运用迁移学习来学习其他计算机视觉模型中的模式,而不必从图像的原始像素值开始。
存在不同的方法来表示自然语言中的单词(词嵌入像左、右侧的词表示)。借助词嵌入算法,机器学习模型就可以利用不同单词之间存在的关系。
知识和模式的迁移在各种领域都是有可能实现的。这篇文章将通过几个不同领域的例子来说明迁移学习是如何工作的。我们的目标是鼓励数据科学家在机器学习项目中使用迁移学习,并让他们意识到这种方法的优缺点。
对于迁移学习的理解,以下这三个方面是我认为数据科学家都应具备的关键技能:
在任何一种学习模式中,迁移学习的应用都是至关重要的。为了获得成功,人类不可能学习到每一个任务或问题。每个人都会遇到从未遇到过的情况,但我们仍然希望以特殊的方式解决问题。从大量的经验中学习,并将“知识”转移到新环境中的能力正是迁移学习的关键所在。从这个角度来看,迁移学习和泛化能力在概念层面上是非常相似的。它们的主要区别在于迁移学习经常被用于“跨任务迁移知识,而不是在一个特定的任务中进行概括”。因此,迁移学习与所有机器学习模型所必需的泛化能力概念有着内在联系。
对于小数据量情况下深度学习技术,应用迁移学习是取得成功的关键。在实际研究中,深度学习几乎是无处不在,但是对于很多现实生活场景来说,通常都没有数百万个带标签的数据来训练模型。而深度学习技术需要大量的数据来调整神经网络中的数百万个参数,特别是在监督式学习的情况下。这就意味着你需要大量带标签数据来训练模型,而标注数据则需要昂贵的人工成本。标记图像听起来很平常的,但是在诸如自然语言处理(NLP)任务中,需要专家知识才能创建大型标记数据集。例如,Penn treebank是一个词性标注语料库,至今已有7年的历史了,它需要与多位语言学专家的密切合作才能完成。为保证小数据量上的神经网络能够正常运行,迁移学习是一种可行的方法。而其他可行的选择正朝着更多概率启发的模式发展,这些模式通常更适合处理有限的小数据集。
迁移学习有着显著的优点和缺点。了解这些缺点对于机器学习应用程序的成功是至关重要。知识迁移只有在“适当”的情况下才有可能。这种情况下,确切地定义“适当”的概念是不容易的,需要点经验知识来帮助确定。例如,你不应该相信一个在玩具车里开车的孩子能够开上法拉利。迁移学习的原理也是一样的:虽然它很难被量化,但迁移学习也是有上限的,也就是说它不是一个适合所有问题的解决方案。
▌迁移学习的一般概念
迁移学习的要求
正如它的名字,迁移学习需要将知识从一个领域迁移到另一个领域的能力。通常,迁移学习可以在高层级上进行解释。例如,自然语言处理任务中的体系结构可以在序列预测问题中重复使用,因为很多自然语言处理问题本质上都可以归结为序列预测问题。迁移学习也可以在低层级上进行解释,例如在实际中你经常会重复使用不同模型中的参数(跳过词组,连续词袋等)。迁移学习的要求,一方面是针对具体的问题而定,另一方面则是由具体的模型决定。接下来的两节将分别讨论迁移学习在高层级和低层级的应用方法。尽管在文献中通常会用不同的名字来阐述这些概念,但是迁移学习的总体概念仍然存在。
多任务学习
在多任务学习中,你可以同时在不同的任务上训练模型,通常这些都是深度学习模型,因为它们可以灵活地进行调整。
网络体系结构是这样调整的:第一层跨越不同的任务使用,随后为不同的任务指定特定的任务层和输出。总体的思路是,通过对不同任务的网络进行训练,网络将更好地推广,因为模型需要在相似的“知识”或“处理”任务上表现良好。
例如,自然语言处理任务的最终目标是执行实体识别的模型,而不是在实体识别任务纯粹地训练模型。你还用它来处理一部分语音分类,词语联想等任务......因此,模型将从不用的结构、不同的任务和不同的数据集的学习中获益。如果你想学习更多关于多任务学习的内容,强烈建议你阅读Sebastian Ruder的关于多任务学习的博文(http://ruder.io/multi-task/)。
▌特征提取
深度学习模型的一大优点是能够“自动化”地提取特征。基于标记的数据和反向传播法则,网络能够捕捉到对任务有用的特征。例如,对于图像分类任务,网络会计算出输入的哪一部分是重要的。这意味着手动定义的特征是很抽象的,而深度神经网络学习到的特征可以在其他问题中重复地使用。因为网络所提取的特征类型,常常对其他问题也是有用。本质上,你可以使用网络的第一层来确定有用的特征,但是你不能在其他任务上使用网络的输出,因为这些输出是针对特定任务的。
考虑到深度学习系统强大的特征提取能力,如何重复使用现有网络来执行其他任务的特征提取?
这里有一个方法,可以将新的数据样本馈送到网络中,并将网络中的一个中间层作为输出。这个中间层可以被设置为一个固定的长度,来表示原始数据的输出。特别地,在计算机视觉领域使用图像特征,馈送到预训练好的网络(例如,VGG或AlexNet),并在新的数据表示上使用不同的机器学习方法。提取中间层作为图像的表示能够显著地减少了原始数据大小,以便它们更适合于传统的机器学习技术(例如,对于一个128×128的小图像:大小为128x128=16384像素,逻辑回归算法或支持向量机通常有更好的算法性能)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10