大数据—商业价值实现的最佳捷径
电子商务、社交媒体、移动互联网、物联网的兴起极大地改变了人们生活与工作的方式,它们给世界带来巨大变化的同时,也让一个大数据时代真正地到来。与传统数据相比,大数据主要体现在数据量庞大、数据类型丰富、数据来源广泛三个方面,大数据的这三大特征不仅仅悄然改变着企业IT基础架构,也促使了用户对数据与商业价值之间关系的再思考。
大数据所蕴含的价值
对于当今的企业而言,数据就是一种重要的战略资产,它就像新时代的石油一样,极富开采价值。如果能够看清大数据的价值并且迅速行动起来,那么在未来的商业竞争中占据会占得先机。事实上,美国奥巴马政府已经投资2亿美金启动了“大数据研究和发展计划”,从政府层面鼓励企业收集海量数据、分析萃取信息的能力。英特尔亚太研发有限公司总经理何京翔博士表示:“信息数据就是21世界的石油,石油只有经过开采、提炼最后变成汽油等化学品才能够体现出价值。大数据与石油一样,仅仅存储而不进行分析和处理是体现不出它的价值。”
图一:全球知名调研机构IDC公司 对全球数据增长以及数据类型分布情况的调研与预测。相对于传统的结构化数据,非结构化数据、内容数据的增长迅速,且蕴含了极大的价值。
任何企业都希望能够充分挖掘出像数据这种战略资源的价值,从而做出更为准确的商业决策。过去传统的商业智能局限在分析企业信息系统自身产生出来业务数据,这些数据大部分为数据库等结构化数据,而随着非结构化数据成为企业数据的主力军,传统商业智能的方式方法显然已经落伍。传统商业智能就犹如坐在自己车里,通过后视镜看后面发生的情况;而大数据分析则像是向前看的望远镜,用户通过望远镜能够看到未来可能会发生的情况。之所以会这样,是因为大数据分析是基于构化和非结构化数据的总和,在数据分析的全面性上是传统商业智能所不能比拟的,这意味着通过分析结构能够提供给企业更加全面和准确的商业洞察力。
图二:全球知名咨询机构麦肯锡对于不同行业所产生的数据类型的分析。麦肯锡全球研究所认为几乎所有行业正在大量产生非结构化数据。
大数据打破了企业传统数据的边界,改变了过去商业智能仅仅依靠企业内部业务数据的局面,其背后蕴含的商业价值不可低估,IDC就在其大数据相关报告中着重阐述了大数据的商业价值:行业领导企业与其他企业有着本质的区别,行业领导企业会积极将新的数据类型引入到数据分析之中,为商业决策做出更加准确的判断,那些没引入新的分析技术和新的数据类型的企业在未来是不可能成为行业领导者。这本质上其实是要求企业能够从思维的角度彻底颠覆过去的观点,大数据在未来企业中的角色绝对不是一个支撑者,而是在企业商业决策和商业价值的决策中扮演着重要的作用。[page]
从支撑到决策
传统IT,从服务器、存储、网络、PC这些硬件设施,到CRM、ERP、PLM等应用软件,本质上是在对企业各个业务流程层面起到了支撑作用,虽然传统的商业智能分析能够对于企业的商业决策起到一定的作用,但是传统商业智能分析在当今这个大数据时代已经举步维艰。大数据的价值在于它能够有效的帮助各个行业用户做出更为准确的商业决策,从而实现更大的商业价值,它从诞生开始就是站在决策的角度出发。
图三:全球知名咨询机构麦肯锡对美国不同行业应用大数据技术潜在价值评估。
麦肯锡认为大数据正在为全球创造不可低估的商业价值。首先,大数据能够能够明显提升企业数据的准确性和及时性;此外还能够降低企业的交易摩擦成本;更为关键的是,大数据能够帮助企业分析大量数据而进一步挖掘细分市场的机会,最终能够缩短企业产品研发时间、提升企业在商业模式、产品和服务上的创新力,大幅提升企业的商业决策水平,降低了企业经营的风险。
事实上,大数据离我们并不遥远,现实生活中已经有很多活生生的案例,这些案例充分说明大数据对于未来的商业决策有着不可低估的作用。比如2011年,英国对冲基金Derwent
Capital
Markets花费4000万美金首次建立了基于社交网络的对冲基金。该基金通过对Twitter的数据内容来感知市场情绪,从而进行投资。美国加州大学河滨分校也在2012年公布了一项通过对Twitter消息进行分析从而预测股票涨跌的研究报告。
图四:英国对冲基金Derwent
Capital
Markets通过分析Twitter数据来预测股市的波动,该应用为典型的大数据应用,通过实时分析数据来获得更为准确的投资趋势。图中红线代表Tweets中“平静”数值;蓝线表示3天后的道指变化。在这两条线段重合的部分,“平静”指数预测了3天后道指收盘指数,从图中我们可以发现红、蓝两线经常走势相近。
可以说,在IT日益渗透到企业和个人方方面面的今天,大数据将逐渐成为很多行业企业实现商业价值的最佳途径。IDC中国企业级系统与软件研究部高级研究经理周震刚就表示:“毫无疑问,未来几年大数据会逐渐向更多行业发展,除了互联网和电信之外,其他像政府、金融、制造业都会开始有大数据的应用。”当然,可能还有人会质疑大数据的决策效果,但是不可否认的是大数据正在彻底改变商业决策的模式与方法,大数据是IT价值从企业业务支撑到企业决策转变的最好体现。
图五:美国德克萨斯大学《measuring the business impacts of effective
data》报告,该报告认为数据使用率提升10%对行业人均产出的平均提升幅度有着重要影响,最为明显的就是零售行业,在零售行业数据使用率提升10%就能够使得人均产出提升49%,效果异常明显。
另外值得关注的是,企业的商业决策带有很强烈的行业特性,不同行业的企业对于大数据分析的需求并不相同,甚至由于不同行业的关系,这种需求可能是千差万别。这也就要求大数据解决方案不仅仅包括良好的数据分析能力,也需要包含很多行业的知识。IDC中国企业级系统与软件研究部高级研究经理周震刚就表示:“从传统概念来讲,大数据非常复杂,无法形成打包好的分析应用解决方案。不过在未来几年中,某个行业的应用会形成一个共性,厂商们会基于这个共性打包出一些大数据的解决方案推向这些行业用户。另外,会有更多的行业ISV会加入到大数据平台,基于这个大数据平台来开发应用。”从本质上来看,企业用户在商业决策中需要的是一个包含了灵活可靠的基础架构、功能强大的数据分析能力与经验丰富的行业分析能力的大数据综合性解决方案,仅仅依靠几套开源软件和设备是不能满足企业在商业决策上的长久需求,英特尔亚太研发有限公司总经理何京翔博士就表示:“大数据不仅仅是一个技术问题,英特尔认为大数据需要一个全面的大数据解决方案。英特尔在提供优秀的基础架构同时,还重点将Hadoop软件平台进行优化并提供软件服务,更加重要的是会针对分析工具和用户界面进行不同行业解决方案的定制。此外,英特尔也和众多行业ISV进行多角度、多方位的合作,从而构建出一个完善的大数据解决方案。”
从商业支撑到商业决策,大数据的商业魅力正在逐渐显现。在这个商业迅速信息化、社交化、移动化的时代,大数据必然会成为大部分行业用户商业价值实现的最佳捷径,我们需要做的就是认清本质、转变思路、未雨绸缪、运筹帷幄,在大数据时代中抓住无限商机。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21