京公网安备 11010802034615号
经营许可证编号:京B2-20210330
百个业务员的销售分析,你的Excel还够用吗
每个老板都希望每天醒来,能清楚了解公司的销售状况。
但当公司的业务开展到数十个省市,有上百个业务员时,老板就像是被关进了小黑屋。只有在各个大区负责人来汇报,告诉你公司业务的内容与细节,才能在小黑屋上开个小窗:哦,原来我们销售状况是这样的啊。
这时老板往往会制定一大堆复杂的销售绩效,要求各个分、子公司填写各种各样的销售数据,用Excel做这样那样的销售分析报表,梦想着每天早上看看几十个Excel报表就知道运营中存在的所有问题。
想象很美好,现实很骨感
从电话呼出,销售拜访,需求分析……各个环节的转化率。
截止昨日为止,我们这一季度的销售回款率。
所有月销售同比下滑超过10%的区域、品类、渠道、销售员,实时通知责任人整改。
……
这些需求对老板再平常不过了。但是想要满足这些需求可不简单,在过去如何实现这些需求呢?
做个Excel的数据模板下发到各个分、子公司用来收集数据,开个电话会议,布置工作,解释填报的规则。(耗时1天)
收到反馈回来的数据,发现其中有着各种各样的问题,比如填错了客户公司名称、漏写了地区字段、单元格格式错误……需要一一校对。(耗时3天)
从市一级公司,到省一级,再到大区,最后再到总公司,以上流程都要再走一遍,半个月都过去了。
拿着这堆过时的数据还能再做什么决策呢?
为了解决这些问题,公司可能已经上了ERP、CRM等各种系统。
但系统间的数据不打通,生成的报表只有固定的几个字段,如果需要额外数据,只能找IT部门帮忙从业务系统中导出,再将N张Excel的数据合并到一张表格中,而这才完成了做销售分析的数据准备工作。
比如为了查询销售回款率,往往需要在财务系统中生成报表,查询实际入账金额,然后将数据导入Excel中,再与CRM生成的报表匹配,查询该笔销售的负责人。
“
怎样才能实时拿到最鲜活的销售数据,让数据流像神经一样遍布企业的各个组织,反馈一线最真实的运营状态?
”
找个简单的办法搞定他
F-One采用了组件化的设计,有开放的API接口,有指标建模引擎,能自定义工作流,有多级权限管理,有报表引擎,可以自定义仪表盘,最重要的是F-One能把这些模块组件联动起来。
通过打通CRM、ERP、订单系统的数据,F-One直接将需要的数据抽取到系统中。不需要再找IT,跑各种各样的数据,再将数据清洗,合并到一张Excel中。
▲F-One的数据流不需要懂SQL等IT技能,点击拖拽就能完成从数据抽取、清洗、合并等数据准备流程。
根据这些数据,公司能定义管理层最为关心的指标销售同比增长、产品盈利率、销售预算执行率等。将这些核心指标的计算逻辑配置到F-One中,这样F-One就能自动整合各个数据源,实时计算出企业核心指标:
特别需要提到的是,F-One是面向业务人员的业务建模和数据分析平台,不需要IT部门过多的支持,业务部门就能修改各个指标的计算逻辑。
举个简单的例子,过去计算产品应收账款回款率时,只计算了当期到款与当期销售两个维度,现在老板要将期初应收也加入计算公式中。
过去,业务部门可能得去找IT部门重新导出报表。在F-One中,业务部门只需要在系统中调整计算公式,就能生成新的考核指标,不需要额外的IT开发支持:
F-One能让所有的分、子公司都在一个表单中填写数据,实时同步数据,不需要像过去一样层层申报。
除此之外,F-One还提供多种权限设置规则。可以根据职务、职能的不同,限制用户能进行的操作,以及访问的数据。
例如,末级销售员只能填报、编辑自己负责区域内的销售额:
华东区销售总监可以看到上海、福建、浙江、江苏、安徽、山东的所有销售数据:
大老板则可以通过F-One的可视化报表查看提炼过的数据洞察,了解全面的销售情况:
按需配置,在同一平台实现协同数据分析,并且让企业核心数据只被应该看到的人看到,不会出现不必要的扩散(比如在过去,需要大量初级人员整理销售量、回款数额等企业核心数据)。如果数据出现异常,比如上海的应收账款回款率率出现大幅度下降,系统会自动发送预警邮件给负责人,及时跟进整改。
虽然公司所属行业不同、产品不同,销售分析关注的指标自然也各有不同。但所有的企业都面临相同的问题,随着公司规模扩大,组织架构越来越复杂,数据量越来越大,Excel手工统计的方式不仅耗时,而且准确率极低。即使部署了大量IT系统,业务部门依然需要等待IT支持,无法快速响应业务运营的需求。
该制定怎样的渠道政策激活经销商?哪种绩效考核能提升销售效率?产品的库存结构是否合理……在面对决策时,老板依然只能“凭经验、靠感觉”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31