BI的应用状况与中外差距分析
商务智能活动在美国和欧洲比在世界上任何其他地区都要发达,商务智能已经由“旁门左道”转变为“主门正道”。欧美的企业已经认识到商务智能的重要意义,因而对它寄予很高的期望,希望能够通过商务智能充分利用企业以往对信息技术的投资、改善决策、提高利润、提高运营效率和增强透明度。而在这些市场上,商务智能厂商之间的竞争已趋于白热化状态,因而各个厂商使出浑身解数去争取竞争优势。不过,就算是在世界上商务智能最发达的这些地区,企业对商务智能的部署也多是部门性的和战术性的。商务智能的理想和现实之间仍然存在了一条“成熟性沟壑”(见下图),商务智能要想实现其在企业中的战略性地位还有很长一段路要走。
图1 商务智能的理想和现实之间的差距
但是,欧美企业的商务智能开支还是处于不断增长的势头。根据加特纳公司预计,到2003年底大企业中有70%都会部署商务智能,虽然并不一定把它当做全公司范围的、战略性的计划。
图2 欧美企业商务智能投资的增长
加特纳公司在2002年进行的商务智能调查中发现,商务智能的渗透率相对来说还是比较低的,在美国比在欧洲还要低。
图3 美国和欧洲的商务智能的渗透率
美国和欧洲的企业对商务智能工具的使用略有不同,美国企业用商务智能做在线分析处理要比欧洲企业多,而欧洲企业用商务智能进行高级分析比美国企业要多。
图4 欧美企业对商务智能工具的利用
商务智能的部署重点在北美企业和欧洲企业中也有所不同。
图5 欧美企业商务智能的部署重点的不同
纵观欧美企业对商务智能的应用应该说是“喜忧参半”:喜的是许多企业都计划实施商务智能,对商务智能的投资在持续增长;忧的是商务智能仍未被广泛地提升到战略性层面,这对企业和商务智能的发展都是不利的。为了使企业能够更充分地利用商务智能,欧美企业的领导人必须继续增强对商务智能的认识,带领企业全体员工把商务智能转变成战略性的数据管理、分析决策和绩效提升的“秘密武器”。
[page] 中国企业对商务智能的应用
商务智能在中国的的发展尚处于起步阶段,大部分企业对商务智能仍然缺乏必要的了解。据IDC预测,如果中国经济继续保持高速增长,商务智能软件在中国内地市场的年销售额平均增长至少在65.6%,但即使如此,到2006年中国内地的商务智能软件市场规模仍不到一亿美元。中国虽有宝钢、中国海关以及大的银行和电信公司进行过或正在进行数据仓库和数据挖掘项目,但是大部分企业在这方面的应用还几乎为零。但是,笔者坚信,随着中国企业信息化建设的进一步完善,对商务智能系统的需求会与日俱增。
虽说几乎每个中国的企业都需要商务智能,但大规模的分析主要集中在竞争激烈的生活消费品行业、零售业以及金融服务业(如银行、保险等)。由于国内的生活消费品行业和零售业利润薄,信息化程度低,资金实力不强,因而没有足够能力实施。被商务智能软件厂商们看好的反而是电信、金融、航空等行业,因为这些行业的信息化程度偏高,并且这些行业从某种意义上讲都是服务业,客户的需求扮演着重要角色,准确、科学地把握客户的需求是身处这些行业的企业决策者们孜孜以求的。另外,这些行业可以利用商务智能来补充和完善它们实施的CRM和ERP系统。Business
Objects和Brio在国内实施的案例中,多数集中在这几个行业。另外,商务智能厂商们也看好正在实施电子政务计划的中国政府部门。
尽管中国企业在商务智能的应用方面还处于刚刚起步阶段,但它的需求潜力巨大。在过去两年里,已经有不少国际商务智能公司进入中国,其中有MicroStrategy,
Business Objects,
Cognos等国际知名的传统的商务智能软件厂商,也有一些著名的企业管理应用软件厂商,比如SAP、甲骨文和冠群等公司投资于分析软件。国内用友和金蝶近期也推出了这类产品。过去一年有些厂商实现了两位甚至三位数的高速增长的事实让许多其他厂商确实看到了中国发展商务智能的巨大希望和潜能。目前,在中国大陆发展的这些跨国厂商纷纷招兵买马、摩拳擦掌,准备大干一场,更多的厂商则通过寻求合作伙伴或者直接设立办事处加快进入中国市场的步伐。面对甲骨文、IBM等国外品牌对中国市场的进攻,国内厂商如金蝶、用友、创智等一方面同这些巨头建立良好的合作关系以维持发展,另一方面也在积极提升产品和解决方案的内在品质,向客户提供更完美的决策支持服务,争取与国外厂商一比高低。
世界上其他地区的企业对商务智能的应用
根据IDC公司在2003年7月发布的一份调查报告,亚太地区的大型金融服务公司、公共机构和制造性公司仍然在投资商务智能解决方案,以期把数据转换成智能,并用来支持决策。亚太地区的商务智能解决方案的市场在2002年接近5.9亿美元,预计到2007年会超过10亿美元。IDC公司估计商务智能增长最快的行业包括医疗、教育和服务。由于亚洲企业在因特网、数据储存、数据仓库和管理应用软件等方面进展迅速,商务智能将会迈向更高的层面。尽管如此,笔者认为亚洲企业(日本企业除外)在应用商务智能方面与欧美企业比起来在短期内还会存在很大距离。
从厂商角度讲,虽说亚太地区占世界商务智能市场的总份额不是太大,但是它代表的是崛起的未来市场。世界上的主要的商务智能软件厂商都在亚洲设有分支机构。另外,该地区也有一些当地的软件企业在进行商务智能软件的开发。可以预计,接下来的市场竞争将会十分激烈,会有一场商务智能软件企业之间的“智能战争”。
许多日本企业(比如佳能、夏普等)非常重视商务智能和数据仓库的建设,已用这一工具来建造“管理驾驶舱”,改善经营决策的水平。商务智能软件公司Brio和Business
Objects在日本取得了很大的成功。日本还有一个自称为日本“惟一独立的数据仓库/商务智能和CRM分析方面的咨询公司”——IAF,该公司在美国加州还设有软件分公司。
虽然商务智能在韩国还是一个比较新鲜而未经验证的概念,已经有一些企业对商务智能的收益产生兴趣了,这是有一定基础的,因为前几年韩国公司已经在信息技术基础设施平台上做了很大的投资,为提高企业的效率和利润打下了一定的基础;另外,韩国的大企业都实施了ERP和CRM解决方案,进行了不少流程创新。现在是利用企业收集和积累的数据和信息将效率、利润和创新进一步提升的时候了。据估计,韩国的商务智能市场到2003年底将增长到820万美元。由于预计到商务智能市场的潜力,很多信息技术厂商都纷纷涌入韩国市场,其中有系统整合商、CRM厂商、硬件厂商、在线分析处理厂商、企业信息门户厂商和企业应用软件整合厂商等,熟悉的名字包括甲骨文、IBM、微软、冠群、Business
Objects和MicroStrategy等。
在印度,商务智能的历史也不长,大多人还不是非常理解商务智能,他们通常把它当做传统的数据库分析工具或者把它等同于收集信息的市场情报工作。可以说,商务智能在印度仍处于初级阶段,接受和执行商务智能的多是银行和电信等企业。据苏利文和弗洛斯特研究公司估计,印度的商务智能市场规模到2002年底是一千万美元,预计到2005年能够增长到三千万美元。
在目前市场上,在印度设立分公司近5年的SAS公司占据了22.5%的市场份额,是不可争辩的领导者。商务智能在印度会有较大的增长,主要原因是大中型企业和跨国公司正在进行数据仓库、数据集市、在线分析处理和数据挖掘等方面的工作,以期解决具体的业务部门在数据接入、趋势分析和利润预测等方面的需求。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21