京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在训练的时候你的模型是否会出现训练时速度很慢?或者预测结果与训练结果相差过大的现象?那我们可能就需要处理一下过拟合的问题了。
首先看一下overfitting维基百科上的一些信息:
Overfitting occurs when a model is excessively complex, such as having
too many parameters relative to the number of observations. A model that
has been overfit has poor predictive performance, as it overreacts to
minor fluctuations in the training data.
In particular, a model is typically trained by maximizing its performance on some set of training data. However, its efficacy is determined not by its performance on the training data but by its ability to perform well on unseen data
The potential for overfitting depends not only on the number of
parameters and data but also the conformability of the model structure
with the data shape, and the magnitude of model error compared to the
expected level of noise or error in the data.
从以上两段可以稍微总结一下,当你的模型过于复杂时,比如说输入参数过多,你的模型就会出现过拟合问题,该模型虽然会在训练集上表现出较好的预测结果,然而!在预测的时候呢?预测结果就会表现的很差。根据维基的定义以及我平时的一些实验总结,当你observation
的noise 过多,输入维度过大,都可能会导致overfitting。
解决办法就是我们可以启用交叉验证(cross-validation),正则化(regularization),Early Stopping,剪枝(pruning),Bayesian priors这几种方法。
先说cross-validation:
cross-validation 的原理就是现在它的一个子集上做训练,这个子集就是训练集,再用验证集测试所训练出的模型,来评价模型的性能和指标,最后再用测试集来预测。
Early Stopping就是在每次训练的epoch结束时,将计算出的accuracy 跟上一次的进行比较,如果accuracy 不再变化,那么停止训练。
下面主要说下regularization在NN中的作用:
模型假设三层,输入,隐藏,输出。输入层为2个神经元,输出为2个,batchsize为10,下图为当隐藏层神经元个数分别设置为3,6,20时,模型的情况:

注意看当隐藏神经元为20时,模型的状况,每个红色的点都被完美的归类,没错,这在训练时结果是很好,但是在测试集的表现呢?这就不一定了,谁能保证自己的训练结每点噪声呢?是不是?所以用这个模型去预测未知的,就可能造成预测结果很差,这就是NN的overfitting问题。
所以一般大部分情况,我们在调试模型时很多时候是在跟overfitting做斗争。关于regularization方法。
简单来说就是在目标函数上加一个λ
使之变成Error+λf(θ),λ用来惩罚那些权重很大的向量,称之为正则系数吧!λ=0
就意味着没有采用regularization来预防overfitting。
regularization 有 L1 regularization和L2 regularization。如果你想知道哪一个特征对最后的结果产生了比较大的影响,可以采用L1 regularization,如果你不那么在意对特征的分析,那就用L2 regularization吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01