谈谈银行业的数据治理
数据价值链螺旋受阻
在我们对数据利用提出迫切需求的过程中,许多深层次的数据问题其实已经开始逐步暴露,例如,数据认责不明导致数据源头录入质量不高,数据标准缺失导致统计口径混乱,整体数据质量缺乏有效的监控和管理等等。
数据已经成为企业的资产,但是很遗憾的是它本身并不能直接产生价值,这也是大数据这么火但是很少有企业能够充分发挥数据的价值的原因。要明白如何让数据成为生产力,我们必须理解数据、信息、知识和智慧之间的关系。
数据:它是一种将客观事物按照某种测度感知而获取到的原始记录,未被加工解释,不能回答特定问题,它与其他数据之间也没有建立相互联系,是分散和孤立的。信息:对数据进行加工处理之后,是数据之间建立相互的联系,形成回答某个特定问题的文本,以及被解释具有某些意义的数字、事实、图像等形式的信息。知识:是知识工作者运用大脑对获取的信息进行系统化训练和提炼、研究、总结和分析之后的结果,知识能够精确的反映事物的本质。智慧:在已有的知识的基础之上,对信息进行分析、对比、演绎并找出有价值的部分,并将其深化到已有的知识框架中,则上升为智慧。
这是个螺旋上升的过程,其实也是我们数据产生价值的过程。在这个过程中,最重要的一步是将数据转化为信息,这一步做的成果的好坏,直接关系到整个数据价值链的成败。也就是说,要想让数据成为银行的生产力因素,就必须将数据治理放在全行战略的高度。
数据、信息、知识和智慧示意图
在帆软银行顾问近几个月走访江浙区域银行的过程中,能听到的一个明显的声音是,大家都知道数据的价值,也都能够发现数据质量对发挥数据价值的阻碍,但是当领导提出数据治理的期望时,科技部往往面面相觑。
大多数的科技部门对于数据治理还是停留在缺失数据补充,错误数据清洗等具体的事情上。诚然,这些具体的措施都是数据治理的一部分,但很遗憾这样的工作是没办法实现全面的数据治理的,也没办法通过这样的数据治理将数据应用和挖掘提升一个层次。
我国银行数据治理现状
经过多年的信息化银行的建设,我国各家银行积累了海量的、丰富的数据资源。在当今大数据时代,数据本身非常重要,其潜在资产价值对于银行而言更为关键。未来最善于利用数据分析来引导决策、控制风险、进行产品创新的银行将获得更多新的竞争优势。
帆软银行顾问了解到,当前很多银行纷纷将数据治理提上了日程,开展了一系列持续的治理工作,在业务发展模式上更加注重数据的管理提升和内部挖掘潜力,并取得了一定的成就,比如基本统一了全行编码规则,初步实现了客户和产品的主数据维护等。但是现阶段银行的数据治理还是存在管理维度、核心领域和技术维度三个层面的难度,要解决困境就需要对各个层面的问题进行分解、逐个突破。
在推进精细化管理和建立分析挖掘平台方面,银行的数据还存在数据基础薄弱,数据不完整不一致的问题。总结来看,当前我国银行特别是农商行体系数据治理存在的问题主要包括:
1.缺少数据治理企业文化
银行数据治理是一项庞大而复杂的工程,需要各个部门之间,尤其需要加强科技部门和业务部门之间的合作,才能最终高质量、高成效的完成数据治理工作。全行企业文化的建设必须考虑到数据资产管理这个层面,从战略角度启动 、开展和推进数据治理工作,建立一种以数据资产为导向的企业文化,将数据治理、科技治理和公司治理有机的结合起来。
2.没有完善的组织和制度
随着数据治理工作逐渐被重视,银行内部已离不开一个企业级的数据治理职能组织。目前,多数商业银行的数据治理组织和制度由科技部门牵头,整个组织体系业务参与度欠佳,但从数据问题分析的结果来看,业务部门是产生数据的最初、最大来源,数据治理的目的是使银行业务更好地被经营和管理,所以也需要业务部门对数据治理工作进行重视,深入参与和主动负责,保证数据治理的真正落地。
3.未建立数据治理流程和有效的认责管理制度
当前,使用数据的部门因具有明确的、迫切的数据需求,而成为处理问题的主要推动者。但是,在一般情况下,由于没有完整的流程管理机制,在推动工作中会出现以下问题:
(1)不同领域的数据分布在不同的系统中,并由不同的部门负责管理,当需要进行夸领域、跨系统的数据治理工作时,会出现沟通成本高,协调难度大的问题。
(2)解决数据问题时仅从局部考虑,为解决当前紧急问题,较少考虑数据复用和共享机制,不利于后续的系统整合工作。
(3)数据问题解决后,较少进行跟踪管理和规范治理,后续的认责机制不健全,不利于体现数据治理的重要性和必要性。
4.缺少数据治理各领域的管理体系
(1)缺少企业级数据标准管理体系。
虽然银行拥有了大量的数据资源,但是,也经常面临重要数据缺失,系统间数据不一致,统计口径和加工方法不一致,导致数据可信度降低的问题。深入分析后发现,出现这种现象的原因为缺乏有效的数据标准化。
(2)缺少企业级元数据管理体系。
目前,我国大多数银行的元数据管理仅限于少数系统和少数用户,尚未达到体系化的程度,也存在完备性不足的情况。
(3)缺少企业级数据质量管理体系。
数据的质量对银行业发展尤为重要,并且银行对数据质量的治理重视程度会直接影响数据治理的成效。银行的数据质量管理应当涵盖数据质量问题的防范、识别、度量、分析、监控、清洗等管理活动,以满足对数据质量的要求。
(4)缺少完备的数据生命周期管理体系。
当前我国银行大部分在系统无法支撑时才考虑数据清理备份的工作,难以做到对数据生命周期的统筹管理,并且对支付数据生命周期管理的系统和工具建设力度不够,不能很好的支撑全行数据生命周期管理工作。
(5)缺乏完善的系统支撑和技术手段。
现代的银行系统数据量庞大,各式系统多种多样,如果不依赖技术手段,没有相应的支撑平台和工具,就不可能理解如此庞大的数据量和看到其潜在价值。
要想达到数据开发、共享、使用和管理的全方位良性循环,就必须建立起全行级别的数据治理体系,整合行内人才资源,制定相应的管理制度和文化体系,完善数据治理流程管理,利用好科技力量进行各项工作支撑。
建立银行数据治理体系
做好数据治理是一项复杂、长期、系统性的工程,涉及思维、方法、组织、系统工具等多方面要素的综合运用。为了满足企业内部的信息使用需要,一般会通过成立专门的数据治理体系来保证数据的可用性、可获取性、高质量、一致性以及安全性。下面将对银行的数据治理体系架构进行介绍:
基于数据治理时代浮现的诸多机遇,以及面临的一系列问题,我们对商业银行数据治理体系进行研究分析,发现银行的数据治理体系也是一个金字塔结构,依次为战略、机制、领域、技术支撑,从上至下指导,从下而上推进,形成一个多层次、多维度、多视角的全方位框架,如下图:
商业银行数据治理体系
战略:需要进行目标和规划的蓝图设计,将数据治理提升到全行经营战略地位。机制:需要建立健全组织、制度、角色和流程等四个方面的机制,进行全方位可持久的数据治理工作。领域:数据治理的具体领域包括元数据、数据标准、生命周期管理、数据模型、数据存储、数据分布、数据交换、数据集成、数据服务和数据质量管理等内容。技术支撑:数据治理需要在技术层面对上面的各个领域进行管理和支持,比如有数据质量分析、数据建模工具、数据清洗工具、生命周期管理、质量检查工具、数据管理系统等。
从商业银行数据治理体系的金字塔结构可以看出,实际上银行的数据治理体系包含两个层面:一是数据治理核心领域,二是数据治理的保障机制。战略、机制及各领域的技术支撑是商业银行进行数据治理的全面概貌。其相互关系如下图:
商业银行数据治理的保障机制与核心领域
数据治理包含保障机制和核心领域两个部分,他们之间相互支撑,共同保障数据治理的全过程管理。保障机制提供制度和战略力量的支持,明确了组织架构、制度章程、流程管理和及时应用,用来规范数据治理的各个核心领域标准化实施;数据治理的核心领域提供了全方位的数据治理视角,从各个层面各个维度进行数据质量保障,通过相应的系统和技术对战略目标进行支撑和落地,两者之间应该是紧密配合的。
总结
从上面的介绍我们知道,数据治理的过程就是建立数据治理保障机制和完善数据治理核心领域的过程,这两个方面相辅相成,保障机制是数据治理的战略指挥,核心领域是数据治理的枪支弹药,要打好数据治理这场持久战,就必须双管齐下进行建设。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10