运营商BI系统走向精细化
近年来,运营商在BI领域的进展有目共睹,一些电信运营商开始在用户的账单上精准营销,通过整合客户数据,利用数据挖掘技术,在每月消费账单中内置营销服务,从而开辟了全新的营销渠道。那么,对于BI未来规划和近期目标,企业专家又有哪些见解?
对话嘉宾:
亚信联创市场咨询部解决方案咨询部经理 彭怀湘
亚信联创业务运营咨询部经理 冀振明
爱立信中国及东北亚区运营与业务支撑系统总监 林 鹏
驱动BI价值走上台前
记者:在采访中,有运营商人士对于BI理解并不深刻,认为其建设投入与实际带来的经济效益不成正比,您如何看待这一问题?
彭怀湘:我认为这是一个误区,错误地将BI系统归为了生产系统,就如同运营商后台系统的计费系统、BSS系统一样。对于BI的实际价值,举一个例子说明,比如我们要开一家杂货店需要选择地段,我们去考察分析决定开在某街道,开张后果然生意很好。我们看到是这家店的盈利能力,而不是当初那个点子。BI则像那个点子,无法直接评估其经济效益。
BI作为分析决策支撑系统,它对于运营商的作用虽然不如其他生产系统那样直接,但却也是在潜移默化地影响着整个后台的系统决策和运作,同时让生产流程系统更加智能化。
林鹏:目前的系统宏观分析有余,微观分析不足;事后分析有余,事先预测不足;静态分析有余,动态挖掘不足;战略分析有余,战术支撑不足;客户服务团队不能得到信息化端到端的有效支撑。
这种情况直接产生了两个后果:企业高层的决策产出多少效益,有多少直接来源于BI系统难以度量。这使得系统成为企业高层经营分析的工具,对基层营销实践指导不足。
举个例子来说,某运营商A因为新型的智能手机广受大量高端用户的青睐,因此A运营商针对B运营商的高价值客户进行了不同策略的吸引,但似乎在B运营商的BI系统并没有事先预测到VIP客户潜在的流失,甚至在事中事后也没有任何客户挽留行动。[page] 以客户接触点为基准
记者:运营商希望通过BI系统不断实现深度营销,但这是一个贯穿多系统的复杂项目,您认为现阶段亟需解决哪些问题?
冀振明:BI系统的深度营销离不开包括电子渠道系统、CRM系统的支撑,我也认为,最关键的是,真正实现以客户接触点为基点,全面打通业务系统流程。毕竟处在客户的角度,他们并不关心运营商的后台究竟有多少系统在运转,只希望能够解决切身问题。
因此,我们需要以每一个客户接触点为基准,通过BI算出客户消费模型,与CRM产品库的产品做匹配,与电子商务网站信息联动,统一底层数据接口,实现整个业务流程的精细化运营。
更值得注意的是,由于运营商部门设置庞大且复杂,这也使得市场营销活动成为一个多部门跨域合作的项目,因此如何缩短市场营销部门和技术支撑部门的响应时间,强化前后台之间的沟通交流,也将成为BI能否真正体现价值的关键所在。
各级BI系统区别定位
记者:据了解,一些省级运营商的BI系统仅限于本地网存在,请问这与运营商集团层面的BI统一规划是否存在冲突,集团和省公司的BI系统在功能上是如何区分的?
彭怀湘:不会造成影响,因为集团层面和省公司的BI系统在业务范畴、关注层面都用明显的定位差别,两套系统间应该是互补关系。
集团层面BI系统主要负责管理和监控,各省BI系统主要负责市场和经营,而地市公司则借用省公司的数据仓库,远程访问省公司的BI系统,实现市场经营分析活动;同时省公司也将自身BI系统数据定期上传集团公司,以便集团对各省业务数据进行指标考核。
林鹏:全国集中的BI系统着眼的是面向全国的大事。而各地的BI系统,着眼研究各地的特殊问题。我们不能指望用一个数据挖掘的建模就能满足全国各地的要求。各地的情况千差万别,应分享经验、分别建模、独立分析。
重视数据整合和质量提升
记者:BI系统在运营商方面已经建立了完备的演进脉络,请问现阶段运营商的投入和建设重点在哪里,将着重解决实际应用中的哪些难点问题?
冀振明:BI系统建设是一个不断完善的过程,运营商会针对BI系统的不同阶段制定不同的业务目标,以中国移动为例,在2011年,其经分系统将着重精细化迈进,细分客户群,深度运营渠道。
由于运营商每天都在生成数以百万计的数据信息,后台系统又由于种种历史原因导致整体架构并不统一,存在严重的数据割裂现象,这些无疑将加剧运营商BI系统建设难度。作为BI系统的基础,解决数据一致性问题也将成为运营商一项长期工作。厂商一方面要重点关注在如何实现数据整合和质量提升等方面;另一方面,灵活构建切实满足业务人员营销与服务的BI应用。
林鹏:构建系统体系首先要着眼于数据的系统性和全面性,以支撑相应的经营决策。省公司和地市公司的重点会有所不同,地市公司可以在省公司的数据支持下,建立专业系统,对数据进行主题化、深入的分析。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10