运营商BI系统走向精细化
近年来,运营商在BI领域的进展有目共睹,一些电信运营商开始在用户的账单上精准营销,通过整合客户数据,利用数据挖掘技术,在每月消费账单中内置营销服务,从而开辟了全新的营销渠道。那么,对于BI未来规划和近期目标,企业专家又有哪些见解?
对话嘉宾:
亚信联创市场咨询部解决方案咨询部经理 彭怀湘
亚信联创业务运营咨询部经理 冀振明
爱立信中国及东北亚区运营与业务支撑系统总监 林 鹏
驱动BI价值走上台前
记者:在采访中,有运营商人士对于BI理解并不深刻,认为其建设投入与实际带来的经济效益不成正比,您如何看待这一问题?
彭怀湘:我认为这是一个误区,错误地将BI系统归为了生产系统,就如同运营商后台系统的计费系统、BSS系统一样。对于BI的实际价值,举一个例子说明,比如我们要开一家杂货店需要选择地段,我们去考察分析决定开在某街道,开张后果然生意很好。我们看到是这家店的盈利能力,而不是当初那个点子。BI则像那个点子,无法直接评估其经济效益。
BI作为分析决策支撑系统,它对于运营商的作用虽然不如其他生产系统那样直接,但却也是在潜移默化地影响着整个后台的系统决策和运作,同时让生产流程系统更加智能化。
林鹏:目前的系统宏观分析有余,微观分析不足;事后分析有余,事先预测不足;静态分析有余,动态挖掘不足;战略分析有余,战术支撑不足;客户服务团队不能得到信息化端到端的有效支撑。
这种情况直接产生了两个后果:企业高层的决策产出多少效益,有多少直接来源于BI系统难以度量。这使得系统成为企业高层经营分析的工具,对基层营销实践指导不足。
举个例子来说,某运营商A因为新型的智能手机广受大量高端用户的青睐,因此A运营商针对B运营商的高价值客户进行了不同策略的吸引,但似乎在B运营商的BI系统并没有事先预测到VIP客户潜在的流失,甚至在事中事后也没有任何客户挽留行动。[page] 以客户接触点为基准
记者:运营商希望通过BI系统不断实现深度营销,但这是一个贯穿多系统的复杂项目,您认为现阶段亟需解决哪些问题?
冀振明:BI系统的深度营销离不开包括电子渠道系统、CRM系统的支撑,我也认为,最关键的是,真正实现以客户接触点为基点,全面打通业务系统流程。毕竟处在客户的角度,他们并不关心运营商的后台究竟有多少系统在运转,只希望能够解决切身问题。
因此,我们需要以每一个客户接触点为基准,通过BI算出客户消费模型,与CRM产品库的产品做匹配,与电子商务网站信息联动,统一底层数据接口,实现整个业务流程的精细化运营。
更值得注意的是,由于运营商部门设置庞大且复杂,这也使得市场营销活动成为一个多部门跨域合作的项目,因此如何缩短市场营销部门和技术支撑部门的响应时间,强化前后台之间的沟通交流,也将成为BI能否真正体现价值的关键所在。
各级BI系统区别定位
记者:据了解,一些省级运营商的BI系统仅限于本地网存在,请问这与运营商集团层面的BI统一规划是否存在冲突,集团和省公司的BI系统在功能上是如何区分的?
彭怀湘:不会造成影响,因为集团层面和省公司的BI系统在业务范畴、关注层面都用明显的定位差别,两套系统间应该是互补关系。
集团层面BI系统主要负责管理和监控,各省BI系统主要负责市场和经营,而地市公司则借用省公司的数据仓库,远程访问省公司的BI系统,实现市场经营分析活动;同时省公司也将自身BI系统数据定期上传集团公司,以便集团对各省业务数据进行指标考核。
林鹏:全国集中的BI系统着眼的是面向全国的大事。而各地的BI系统,着眼研究各地的特殊问题。我们不能指望用一个数据挖掘的建模就能满足全国各地的要求。各地的情况千差万别,应分享经验、分别建模、独立分析。
重视数据整合和质量提升
记者:BI系统在运营商方面已经建立了完备的演进脉络,请问现阶段运营商的投入和建设重点在哪里,将着重解决实际应用中的哪些难点问题?
冀振明:BI系统建设是一个不断完善的过程,运营商会针对BI系统的不同阶段制定不同的业务目标,以中国移动为例,在2011年,其经分系统将着重精细化迈进,细分客户群,深度运营渠道。
由于运营商每天都在生成数以百万计的数据信息,后台系统又由于种种历史原因导致整体架构并不统一,存在严重的数据割裂现象,这些无疑将加剧运营商BI系统建设难度。作为BI系统的基础,解决数据一致性问题也将成为运营商一项长期工作。厂商一方面要重点关注在如何实现数据整合和质量提升等方面;另一方面,灵活构建切实满足业务人员营销与服务的BI应用。
林鹏:构建系统体系首先要着眼于数据的系统性和全面性,以支撑相应的经营决策。省公司和地市公司的重点会有所不同,地市公司可以在省公司的数据支持下,建立专业系统,对数据进行主题化、深入的分析。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20