SPSS数据分析方法不知道如何选择
一提到数学,高等数学,线性代数,概率论与数理统计,数值分析,空间解析几何这些数学课程,头疼呀。作为文科生,遇见这些课程时,通常都是各种寻求帮助,班上有位宅男数学很厉害,各种被女生‘围观’,这数学为什么这么难,学了有啥用呀。
有用的,当做数据分析的时候,使用到SPSS,在线SPSS分析的时候就知道用处了,在写论文的时候会用到SPSS数据分析,工作的时候也会用到SPSS数据分析。此时才知道原来数学很重要。我的数学不好肿么办?听我一 一道来。
1. 数据类型
学过数学的童鞋都知道,数学里面分了两类数据,离散和连续数据,听上去文绉绉的,不懂。那我问男人和女人知道不,知道,对了这种就是离散数据。身高体重知道不,知道,这种就是连续数据。离散数据可以理解为分类,类别,数个数;而连续数据理解为算平均值,度量,比如平均身高,平均年龄,但不能说成是平均性别。离散和连续数据是数学上文绉绉的称呼。如果我们是做数据分析,通常又换成另外一种称呼,定类和定量数据。定类就是离散数据,定量就是连续数据。这点get到后,数据分析方法啥都不在话下,让智能化软件SPSSAU【备注:在线网页版SPSS】这些去解决就好,默认出来智能化文字分析结果。
2. X和Y
除了数据类型外,数学上老是有一些符号,比如X,Y,Z, α, β,γ,还有好多拉丁符号,看着都头疼,而且更糟糕的是发音还那么奇怪。这些都是数学用词,如果是数据分析,只需要知道X和Y就可以。为什么这么简单呢?数据分析通常是用于业务场景,让所有人都会所有人都能懂的。而数学符号是专业性名词,一小部分学习数学专业的人群才懂。
而X,Y基本所有人都懂,平面二维式思维,如果加上Y就变成空间三维思维。这种会变得复杂难懂,而数据分析出来结果是让人理解让人懂的,越简单易懂越有意义越有用的结论越受欢迎。因此从数据分析角度来看,只需要懂X,Y这两个符号就OK。别小看X,Y这两个符号,加上上述的数据类型,它们可以产生非常多的组合,也称作分析方法。
有了X,Y,我们可以研究X和Y之间的关系情况,比如X对于Y的影响关系,X对于Y的差异关系等。下面一一讲述。
3. X和Y的组合方法
再讲组合之前,先单独讲下不区分X和Y的分析方法,如下表格:
当不需要区分不区分X和Y时,比如我只研究性别1个数据,或者只研究身高,体重情况如何等。并不需要研究关联关系,所以并不涉及X和Y的关联关系。这种都可统称为数据基本描述统计,当然数据类型不一样时,方法不同。比如性别为定类数据,这时用频数分析;身高体重是定量数据,这时用描述分析。数据的基本描述统计是最基础的数据分析方法,而且通常都需要做这类分析方法,因为了解了基本情况是非常必要的。
接下来将下X和Y之间的关联关系时,会使用到的数据研究方法;如下表格:
从上表可以看到,通常会涉及到差异关系,相关关系和影响关系共三类。比如不同性别的兴趣爱好是否有差异,性别为定类数据,兴趣爱好也是定类数据;此时就应该使用交叉卡方分析方法。比如研究性别人群体重是否有差异,性别为定类数据,体重为定量数据,此时就需要使用T检验;除此之外,如果想研究不同专业(理科、工科、文科)的体重差异时,此时应该使用方差分析。当X是定类数据,Y是定量数据,研究X对于Y的差异时,可以使用T检验和方差分析;区分在哪里呢?如果X的类别个数(比如男和女)只有2个时,通常使用T检验;如果X的类别个数超过2个(比如理科、工科和文科)时,只能使用方差分析。差异关系就只能有3种,接下来继续相关关系。
相关关系是研究X和Y的关系情况,比如身高和体重之间有没有关系;X和Y均是定量数据;此时应该使用相关关系,再具体一点应该叫Pearson相关关系(相关关系的数学公式是Pearson这人发明的)。
最后一类是影响关系;X对于Y的影响;影响关系的分析方法区分,完全是根据Y的类别而定;比如Y是定量数据,我们则应该使用线性回归分析;如果Y为定类数据,此时我们应该使用Logit回归分析,而具体再细分,Logit回归可以有:二元Logit回归,多分类Logit回归,区分在于Y,举例如下表:
如果X影响Y时,Y只分为两类,购买和不购买,愿意和不愿意,是和否等,这时候就需要使用二元Logit回归分析;如果Y分为n类(n>2)时,则需要使用多分类Logit回归。
数据类型,X和Y;这两点搞明白后,绝大多数的数据研究方法都可以搞定,而这也是当前数学研究的核心思想。也是分析软件的设计理念,网页在线版本的SPSS即SPSSAU软件平台,它的设计核心理念就是这样,只需要会区分数据类型,知道X和Y;就可以自己进行数据分析,其它的全部都可以直接由SPSSAU生成智能化文字结果;当然,分析方法还有很多的,比如因子分析,聚类分析等,这些方法不是研究X和Y的关联性,而是别有用处。
4. 其它研究方法
除开X与Y的关联关系研究,其实还有一些其它的研究方法;比如对于很多个X同时进行分析应该使用什么方法呢?此时可能会结合分析用处而对应不同的方法;常见有因子分析和聚类分析两种,如下表:
如果说了30句话,现在想把30句话概括浓缩成5个关键词,这种就叫浓缩;此时需要使用因子分析;如果有300个人想进行分类,分成3类人群,此时可使用聚类分析(常见是K-means聚类方法)。
除了浓缩和聚类,事实还有非常多其它的研究方法,比如信度研究,多因素方差,非参数检验,正态性检验,配对T检验等等。后续慢慢再谈,更多知识也可使用网页版SPSS即SPSSAU【备注:在线网页版SPSS】进行学习,里面智能化分析结果一目了然,‘拖拽点一下’完成分析得到智能化结果,更多研究方法的详述也可直接查到。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06