热线电话:13121318867

登录
首页精彩阅读数据挖掘算法:EM算法
数据挖掘算法:EM算法
2018-08-06
收藏

数据挖掘算法:EM算法

1. 极大似然

极大似然(Maximum Likelihood)估计为用于已知模型的参数估计的统计学方法。

比如,我们想了解抛硬币是正面(head)的概率分布θ;那么可以通过最大似然估计方法求得。假如我们抛硬币10次,其中8次正面、2次反面;极大似然估计参数θ值:

其中,l(θ)为观测变量序列的似然函数(likelihood function of the observation sequence)。对l(θ)求偏导

因为似然函数l(θ)不是凹函数(concave),求解极大值困难。一般地,使用与之具有相同单调性的log-likelihood,如图所示

凹函数(concave)与凸函数(convex)的定义如图所示:

从图中可以看出,凹函数“容易”求解极大值,凸函数“容易”求解极小值。

2. EM算法

EM算法(Expectation Maximization)是在含有隐变量(latent variable)的模型下计算最大似然的一种算法。所谓隐变量,是指我们没有办法观测到的变量。

比如,有两枚硬币A、B,每一次随机取一枚进行抛掷,我们只能观测到硬币的正面与反面,而不能观测到每一次取的硬币是否为A;则称每一次的选择抛掷硬币为隐变量。

用Y表示观测数据,Z表示隐变量;Y和Z连在一起称为完全数据( complete-data ),观测数据Y又称为不完全数据(incomplete-data)。观测数据的似然函数:

求模型参数的极大似然估计:

因为含有隐变量,此问题无法求解。因此,Dempster等人提出EM算法用于迭代求解近似解。EM算法比较简单,分为两个步骤:

E步(E-step),以当前参数θ(i)计算Z的期望值

M步(M-step),求使Q(θ,θ(i))极大化的θ,确定第i+1次迭代的参数的估计值θ(i+1)

如此迭代直至算法收敛。关于算法的推导及收敛性证明,可参看李航的《统计学习方法》及Andrew Ng的《CS229 Lecture notes》。这里有一些极大似然以及EM算法的生动例子。

3. 实例

[2]中给出极大似然与EM算法的实例。如图所示,有两枚硬币A、B,每一个实验随机取一枚抛掷10次,共5个实验,我们可以观测到每一次所取的硬币,估计参数A、B为正面的概率θ=(θA,θB),根据极大似然估计求解

如果我们不能观测到每一次所取的硬币,只能用EM算法估计模型参数,算法流程如图所示:

隐变量Z为每次实验中选择A或B的概率,则第一个实验选择A的概率为

按照上面的计算方法可依次求出隐变量Z,然后计算极大化的θ(i)。经过10次迭代,最终收敛。


数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询