热线电话:13121318867

登录
首页精彩阅读朴素贝叶斯的推理学习算法
朴素贝叶斯的推理学习算法
2018-08-07
收藏

朴素贝叶斯的推理学习算法

贝叶斯公式简易推导式:

朴素贝叶斯的朴素在于假设B特征的每个值相互独立,所以朴素贝叶斯的公式是这样的

学习与分类算法:

(1)计算先验概率条件概率


拉普拉斯平滑:

(2)代入被测样本向量,得到不同类别P,再根据后验概率最大化,取P最大的类别作为该标签类别。


朴素贝叶斯优点在于对于小规模数据很好,适合多分类。缺点是数据输入形式敏感而且特征值之间的相互独立很难保证带来的影响。


数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询