1. 引言
最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易,实际上很优雅地用python还是蛮难的。目前为止,觉得就算法仿真研究而言,还是matlab用得特别舒服,可能是比较熟悉的缘故吧。matlab直接集成了很多算法工具箱,函数查询、调用、变量查询等非常方便,或许以后用久了python也会感觉很好用。与python相比,最喜欢的莫过于可以直接选中某段代码执行了,操作方便,python也可以实现,就是感觉不是很方便。
言归正传,做算法要用到很多的向量和矩阵运算操作,这些嘛在matlab里面已经很熟悉了,但用python的时候需要用一个查一个,挺烦的,所以在此稍作总结,后续使用过程中会根据使用体验更新。
python的矩阵运算主要依赖numpy包,scipy包以numpy为基础,大大扩展了后者的运算能力。
2. 创建一般的多维数组
import numpy as np
a = np.array([1,2,3], dtype=int) # 创建1*3维数组 array([1,2,3])
type(a) # numpy.ndarray类型
a.shape # 维数信息(3L,)
a.dtype.name # 'int32'
a.size # 元素个数:3
a.itemsize #每个元素所占用的字节数目:4
b=np.array([[1,2,3],[4,5,6]],dtype=int) # 创建2*3维数组 array([[1,2,3],[4,5,6]])
b.shape # 维数信息(2L,3L)
b.size # 元素个数:6
b.itemsize # 每个元素所占用的字节数目:4
c=np.array([[1,2,3],[4,5,6]],dtype='int16') # 创建2*3维数组 array([[1,2,3],[4,5,6]],dtype=int16)
c.shape # 维数信息(2L,3L)
c.size # 元素个数:6
c.itemsize # 每个元素所占用的字节数目:2
c.ndim # 维数
d=np.array([[1,2,3],[4,5,6]],dtype=complex) # 复数二维数组
d.itemsize # 每个元素所占用的字节数目:16
d.dtype.name # 元素类型:'complex128'
3. 创建特殊类型的多维数组
a1 = np.zeros((3,4)) # 创建3*4全零二维数组
输出:
array([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]])
a1.dtype.name # 元素类型:'float64'
a1.size # 元素个数:12
a1.itemsize # 每个元素所占用的字节个数:8
a2 = np.ones((2,3,4), dtype=np.int16) # 创建2*3*4全1三维数组
a2 = np.ones((2,3,4), dtype='int16') # 创建2*3*4全1三维数组
输出:
array([[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]],
[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]]], dtype=int16)
a3 = np.empty((2,3)) # 创建2*3的未初始化二维数组
输出:(may vary)
array([[ 1., 2., 3.],
[ 4., 5., 6.]])
a4 = np.arange(10,30,5) # 初始值10,结束值:30(不包含),步长:5
输出:array([10, 15, 20, 25])
a5 = np.arange(0,2,0.3) # 初始值0,结束值:2(不包含),步长:0.2
输出:array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])
from numpy import pi
np.linspace(0, 2, 9) # 初始值0,结束值:2(包含),元素个数:9
输出:
array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ])
x = np.linspace(0, 2*pi, 9)
输出:
array([ 0. , 0.78539816, 1.57079633, 2.35619449, 3.14159265,
3.92699082, 4.71238898, 5.49778714, 6.28318531])
a = np.arange(6)
输出:
array([0, 1, 2, 3, 4, 5])
b = np.arange(12).reshape(4,3)
输出:
array([[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11]])
c = np.arange(24).reshape(2,3,4)
输出:
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
使用numpy.set_printoptions可以设置numpy变量的打印格式
在ipython环境下,使用help(numpy.set_printoptions)查询使用帮助和示例
4. 多维数组的基本操作
加法和减法操作要求操作双方的维数信息一致,均为M*N为数组方可正确执行操作。
a = np.arange(4)
输出:
array([0, 1, 2, 3])
b = a**2
输出:
array([0, 1, 4, 9])
c = 10*np.sin(a)
输出:
array([ 0. , 8.41470985, 9.09297427, 1.41120008])
n < 35
输出:
array([ True, True, True, True], dtype=bool)
A = np.array([[1,1],[0,1]])
B = np.array([[2,0],[3,4]])
C = A * B # 元素点乘
输出:
array([[2, 0],
[0, 4]])
D = A.dot(B) # 矩阵乘法
输出:
array([[5, 4],
[3, 4]])
E = np.dot(A,B) # 矩阵乘法
输出:
array([[5, 4],
[3, 4]])
多维数组操作过程中的类型转换
When operating with arrays of different types, the type of the resulting array corresponds to the more general or precise one (a behavior known as upcasting)
即操作不同类型的多维数组时,结果自动转换为精度更高类型的数组,即upcasting
a = np.ones((2,3),dtype=int) # int32
b = np.random.random((2,3)) # float64
b += a # 正确
a += b # 错误
a = np.ones(3,dtype=np.int32)
b = np.linspace(0,pi,3)
c = a + b
d = np.exp(c*1j)
输出:
array([ 0.54030231+0.84147098j, -0.84147098+0.54030231j,
-0.54030231-0.84147098j])
d.dtype.name
输出:
'complex128'
多维数组的一元操作,如求和、求最小值、最大值等
a = np.random.random((2,3))
a.sum()
a.min()
a.max()
b = np.arange(12).reshape(3,4)
输出:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
b.sum(axis=0) # 按列求和
输出:
array([12, 15, 18, 21])
b.sum(axis=1) # 按行求和
输出:
array([ 6, 22, 38])
b.cumsum(axis=0) # 按列进行元素累加
输出:
array([[ 0, 1, 2, 3],
[ 4, 6, 8, 10],
[12, 15, 18, 21]])
b.cumsum(axis=1) # 按行进行元素累加
输出:
array([[ 0, 1, 3, 6],
[ 4, 9, 15, 22],
[ 8, 17, 27, 38]])
universal functions
B = np.arange(3)
np.exp(B)
np.sqrt(B)
C = np.array([2.,-1.,4.])
np.add(B,C)
其他的ufunc函数包括:
all, any, apply_along_axis, argmax, argmin, argsort, average, bincount, ceil, clip, conj, corrcoef, cov, cross, cumprod, cumsum, diff, dot, floor,inner, lexsort, max, maximum, mean, median, min, minimum, nonzero, outer, prod, re, round, sort, std, sum, trace, transpose, var,vdot, vectorize, where
5. 数组索引、切片和迭代
a = np.arange(10)**3
a[2]
a[2:5]
a[::-1] # 逆序输出
for i in a:
print (i**(1/3.))
def f(x,y):
return 10*x+y
b = np.fromfunction(f,(5,4),dtype=int)
b[2,3]
b[0:5,1]
b[:,1]
b[1:3,:]
b[-1]
c = np.array([[[0,1,2],[10,11,12]],[[100,101,102],[110,111,112]]])
输出:
array([[[ 0, 1, 2],
[ 10, 11, 12]],
[[100, 101, 102],
[110, 111, 112]]])
c.shape
输出:
(2L, 2L, 3L)
c[0,...]
c[0,:,:]
输出:
array([[ 0, 1, 2],
[10, 11, 12]])
c[:,:,2]
c[...,2]
输出:
array([[ 2, 12],
[102, 112]])
for row in c:
print(row)
for element in c.flat:
print(element)
a = np.floor(10*np.random.random((3,4)))
输出:
array([[ 3., 9., 8., 4.],
[ 2., 1., 4., 6.],
[ 0., 6., 0., 2.]])
a.ravel()
输出:
array([ 3., 9., 8., ..., 6., 0., 2.])
a.reshape(6,2)
输出:
array([[ 3., 9.],
[ 8., 4.],
[ 2., 1.],
[ 4., 6.],
[ 0., 6.],
[ 0., 2.]])
a.T
输出:
array([[ 3., 2., 0.],
[ 9., 1., 6.],
[ 8., 4., 0.],
[ 4., 6., 2.]])
a.T.shape
输出:
(4L, 3L)
a.resize((2,6))
输出:
array([[ 3., 9., 8., 4., 2., 1.],
[ 4., 6., 0., 6., 0., 2.]])
a.shape
输出:
(2L, 6L)
a.reshape(3,-1)
输出:
array([[ 3., 9., 8., 4.],
[ 2., 1., 4., 6.],
[ 0., 6., 0., 2.]])
详查以下函数:
ndarray.shape, reshape, resize, ravel
6. 组合不同的多维数组
a = np.floor(10*np.random.random((2,2)))
输出:
array([[ 5., 2.],
[ 6., 2.]])
b = np.floor(10*np.random.random((2,2)))
输出:
array([[ 0., 2.],
[ 4., 1.]])
np.vstack((a,b))
输出:
array([[ 5., 2.],
[ 6., 2.],
[ 0., 2.],
[ 4., 1.]])
np.hstack((a,b))
输出:
array([[ 5., 2., 0., 2.],
[ 6., 2., 4., 1.]])
from numpy import newaxis
np.column_stack((a,b))
输出:
array([[ 5., 2., 0., 2.],
[ 6., 2., 4., 1.]])
a = np.array([4.,2.])
b = np.array([2.,8.])
a[:,newaxis]
输出:
array([[ 4.],
[ 2.]])
b[:,newaxis]
输出:
array([[ 2.],
[ 8.]])
np.column_stack((a[:,newaxis],b[:,newaxis]))
输出:
array([[ 4., 2.],
[ 2., 8.]])
np.vstack((a[:,newaxis],b[:,newaxis]))
输出:
array([[ 4.],
[ 2.],
[ 2.],
[ 8.]])
np.r_[1:4,0,4]
输出:
array([1, 2, 3, 0, 4])
np.c_[np.array([[1,2,3]]),0,0,0,np.array([[4,5,6]])]
输出:
array([[1, 2, 3, 0, 0, 0, 4, 5, 6]])
详细使用请查询以下函数:
hstack, vstack, column_stack, concatenate, c_, r_
7. 将较大的多维数组分割成较小的多维数组
a = np.floor(10*np.random.random((2,12)))
输出:
array([[ 9., 7., 9., ..., 3., 2., 4.],
[ 5., 3., 3., ..., 9., 7., 7.]])
np.hsplit(a,3)
输出:
[array([[ 9., 7., 9., 6.],
[ 5., 3., 3., 1.]]), array([[ 7., 2., 1., 6.],
[ 7., 5., 0., 2.]]), array([[ 9., 3., 2., 4.],
[ 3., 9., 7., 7.]])]
np.hsplit(a,(3,4))
输出:
[array([[ 9., 7., 9.],
[ 5., 3., 3.]]), array([[ 6.],
[ 1.]]), array([[ 7., 2., 1., ..., 3., 2., 4.],
[ 7., 5., 0., ..., 9., 7., 7.]])]
实现类似功能的函数包括:
hsplit,vsplit,array_split
8. 多维数组的复制操作
a = np.arange(12)
输出:
array([ 0, 1, 2, ..., 9, 10, 11])
not copy at all
b = a
b is a # True
b.shape = 3,4
a.shape # (3L,4L)
def f(x) # Python passes mutable objects as references, so function calls make no copy.
print(id(x)) # id是python对象的唯一标识符
id(a) # 111833936L
id(b) # 111833936L
f(a) # 111833936L
浅复制
c = a.view()
c is a # False
c.base is a # True
c.flags.owndata # False
c.shape = 2,6
a.shape # (3L,4L)
c[0,4] = 1234
print(a)
输出:
array([[ 0, 1, 2, 3],
[1234, 5, 6, 7],
[ 8, 9, 10, 11]])
s = a[:,1:3]
s[:] = 10
print(a)
输出:
array([[ 0, 10, 10, 3],
[1234, 10, 10, 7],
[ 8, 10, 10, 11]])
深复制
d = a.copy()
d is a # False
d.base is a # False
d[0,0] = 9999
print(a)
输出:
array([[ 0, 10, 10, 3],
[1234, 10, 10, 7],
[ 8, 10, 10, 11]])
numpy基本函数和方法一览
arange, array, copy, empty, empty_like, eye, fromfile, fromfunction, identity, linspace, logspace, mgrid, ogrid, ones, ones_like, r, zeros,zeros_like
Conversions
ndarray.astype, atleast_1d, atleast_2d, atleast_3d, mat
Manipulations
array_split, column_stack, concatenate, diagonal, dsplit, dstack, hsplit, hstack, ndarray.item, newaxis, ravel, repeat, reshape, resize,squeeze, swapaxes, take, transpose, vsplit, vstack
Questionsall, any, nonzero, where
Ordering
argmax, argmin, argsort, max, min, ptp, searchsorted, sort
Operations
choose, compress, cumprod, cumsum, inner, ndarray.fill, imag, prod, put, putmask, real, sum
Basic Statistics
cov, mean, std, var
Basic Linear Algebra
cross, dot, outer, linalg.svd, vdot
完整的函数和方法一览表链接:
9. 特殊的索引技巧
a = np.arange(12)**2
输出:
array([ 0, 1, 4, ..., 81, 100, 121])
i = np.array([1,1,3,8,5])
a[i]
输出:
array([ 1, 1, 9, 64, 25])
j = np.array([[3,4],[9,7]])
a[j]
输出:
array([[ 9, 16],
[81, 49]])
palette = np.array([[0,0,0],[255,0,0],[0,255,0],[0,0,255],[255,255,255]])
image = np.array([[0,1,2,0],[0,3,4,0]])
palette[image]
输出:
array([[[ 0, 0, 0],
[255, 0, 0],
[ 0, 255, 0],
[ 0, 0, 0]],
[[ 0, 0, 0],
[ 0, 0, 255],
[255, 255, 255],
[ 0, 0, 0]]])
i = np.array([[0,1],[1,2]])
j = np.array([[2,1],[3,3]])
a[i,j]
输出:
array([[ 2, 5],
[ 7, 11]])
l = [i,j]
a[l]
输出:
array([[ 2, 5],
[ 7, 11]])
a[i,2]
输出:
array([[ 2, 6],
[ 6, 10]])
a[:,j]
输出:
array([[[ 2, 1],
[ 3, 3]],
[[ 6, 5],
[ 7, 7]],
[[10, 9],
[11, 11]]])
s = np.array([i,j])
print(s)
array([[[0, 1],
[1, 2]],
[[2, 1],
[3, 3]]])
a[tuple(s)]
输出:
array([[ 2, 5],
[ 7, 11]])
print(tupe(s))
输出:
(array([[0, 1],
[1, 2]]), array([[2, 1],
[3, 3]]))
10. 寻找最大值/最小值及其对应索引值
time = np.linspace(20, 145, 5)
输出:
array([ 20. , 51.25, 82.5 , 113.75, 145. ])
data = np.sin(np.arange(20)).reshape(5,4)
输出:
array([[ 0. , 0.84147098, 0.90929743, 0.14112001],
[-0.7568025 , -0.95892427, -0.2794155 , 0.6569866 ],
[ 0.98935825, 0.41211849, -0.54402111, -0.99999021],
[-0.53657292, 0.42016704, 0.99060736, 0.65028784],
[-0.28790332, -0.96139749, -0.75098725, 0.14987721]])
ind = data.argmax(axis=0)
输出:
array([2, 0, 3, 1], dtype=int64)
time_max = time[ind]
输出:
array([ 82.5 , 20. , 113.75, 51.25])
data_max = data[ind, xrange(data.shape[1])]
输出:
array([ 0.98935825, 0.84147098, 0.99060736, 0.6569866 ])
np.all(data_max == data.max(axis=0))
输出:
True
a = np.arange(5)
a[[1,3,4]] = 0
print(a)
输出:
array([0, 0, 2, 0, 0])
a = np.arange(5)
a[[0,0,2]] = [1,2,3]
print(a)
输出:
array([2, 1, 3, 3, 4])
a = np.arange(5)
a[[0,0,2]] += 1
print(a)
输出:
array([1, 1, 3, 3, 4])
a = np.arange(12).reshape(3,4)
b = a > 4
输出:
array([[False, False, False, False],
[False, True, True, True],
[ True, True, True, True]], dtype=bool)
a[b]
输出:
array([ 5, 6, 7, 8, 9, 10, 11])
a[b] = 0
print(a)
输出:
array([[0, 1, 2, 3],
[4, 0, 0, 0],
[0, 0, 0, 0]])
a = np.arange(12).reshape(3,4)
b1 = np.array([False,True,True])
b2 = n.array([True,False,True,False])
a[b1,:]
输出:
array([[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
a[b1]
输出:
array([[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
a[:,b2]
输出:
array([[ 0, 2],
[ 4, 6],
[ 8, 10]])
a[b1,b2]
输出:
array([ 4, 10])
11. ix_() function
a = np.array([2,3,4,5])
b = np.array([8,5,4])
c = np.array([5,4,6,8,3])
ax,bx,cx = np.ix_(a,b,c)
print(ax) # (4L, 1L, 1L)
输出:
array([[[2]],
[[3]],
[[4]],
[[5]]])
print(bx) # (1L, 3L, 1L)
输出:
array([[[8],
[5],
[4]]])
print(cx) # (1L, 1L, 5L)
输出:
array([[[5, 4, 6, 8, 3]]])
result = ax + bx*cx
输出:
array([[[42, 34, 50, 66, 26],
[27, 22, 32, 42, 17],
[22, 18, 26, 34, 14]],
[[43, 35, 51, 67, 27],
[28, 23, 33, 43, 18],
[23, 19, 27, 35, 15]],
[[44, 36, 52, 68, 28],
[29, 24, 34, 44, 19],
[24, 20, 28, 36, 16]],
[[45, 37, 53, 69, 29],
[30, 25, 35, 45, 20],
[25, 21, 29, 37, 17]]])
result[3,2,4]
输出:17
12. 线性代数运算
a = np.array([[1.,2.],[3.,4.]])
a.transpose() # 转置
np.linalg.inv(a) # 求逆
u = np.eye(2) # 产生单位矩阵
np.dot(a,a) # 矩阵乘积
np.trace(a) # 求矩阵的迹
y = np.array([5.],[7.]])
np.linalg.solve(a,y) # 求解线性方程组
np.linalg.eig(a) # 特征分解
“Automatic” Reshaping
a = np.arange(30)
a.shape = 2,-1,3
a.shape # (2L, 5L, 3L)
print(a)
array([[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11],
[12, 13, 14]],
[[15, 16, 17],
[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]]])
x = np.arange(0,10,2)
y = np.arange(5)
m = np.vstack([x,y])
输出:
array([[0, 2, 4, 6, 8],
[0, 1, 2, 3, 4]])
n = np.hstack([x,y])
输出:
array([0, 2, 4, 6, 8, 0, 1, 2, 3, 4])
13. 矩阵的创建
a = np.array([1,2,3])
a1 = np.mat(a)
输出:
matrix([[1, 2, 3]])
type(a1)
输出:
numpy.matrixlib.defmatrix.matrix
a1.shape
输出:
(1L, 3L)
a.shape
输出:
(3L,)
b=np.matrix([1,2,3])
输出:
matrix([[1, 2, 3]])
from numpy import *
data1 = mat(zeros((3,3)))
data2 = mat(ones((2,4)))
data3 = mat(random.rand(2,2))
data4 = mat(random.randint(2,8,size=(2,5)))
data5 = mat(eye(2,2,dtype=int))
14. 常见的矩阵运算
a1 = mat([1,2])
a2 = mat([[1],[2]])
a3 = a1 * a2
print(a3)
输出:
matrix([[5]])
print(a1*2)
输出:
matrix([[2, 4]])
a1 = mat(eye(2,2)*0.5)
print(a1.I)
输出:
matrix([[ 2., 0.],
[ 0., 2.]])
a1 = mat([[1,2],[2,3],[4,2]])
a1.sum(axis=0)
输出:
matrix([[7, 7]])
a1.sum(axis=1)
输出:
matrix([[3],
[5],
[6]])
a1.max() # 求矩阵元素最大值
输出:
4
a1.min() # 求矩阵元素最小值
输出:
1
np.max(a1,0) # 求矩阵每列元素最大值
输出:
matrix([[4, 3]])
np.max(a1,1) # 求矩阵每行元素最大值
输出:
matrix([[2],
[3],
[4]])
a = mat(ones((2,2)))
b = mat(eye((2)))
c = hstack((a,b))
输出:
matrix([[ 1., 1., 1., 0.],
[ 1., 1., 0., 1.]])
d = vstack((a,b))
输出:
matrix([[ 1., 1.],
[ 1., 1.],
[ 1., 0.],
[ 0., 1.]])
15. 矩阵、数组、列表之间的互相转换
aa = [[1,2],[3,4],[5,6]]
bb = array(aa)
cc = mat(bb)
cc.getA() # 矩阵转换为数组
cc.tolist() # 矩阵转换为列表
bb.tolist() # 数组转换为列表
# 当列表为一维时,情况有点特殊
aa = [1,2,3,4]
bb = array(aa)
输出:
array([1, 2, 3, 4])
cc = mat(bb)
输出:
matrix([[1, 2, 3, 4]])
cc.tolist()
输出:
[[1, 2, 3, 4]]
bb.tolist()
输出:
[1, 2, 3, 4]
cc.tolist()[0]
输出:
[1, 2, 3, 4]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26