京公网安备 11010802034615号
经营许可证编号:京B2-20210330
异常检测原理与实验
最近需要对欺诈报价进行识别处理,简单的模型就是给定很多不同数据集,需要找出每个spu下可能存在的欺诈数据,比如{20,22,30},其中的欺诈数据可能就是30。其实加以抽象,属于异常检测范围。
异常检测是发现与大部分对象不同的对象,其中这些不同的对象称为离群点。一般异常检测的方法主要有数理统计法、数据挖掘方法。一般在预处理阶段发生的异常检测,更多的是依托数理统计的思想完成的。
一、基于模型
首先判断出数据的分布模型,比如某种分布(高斯分布、泊松分布等等)。然后根据原始数据(包括正常点与离群点),算出分布的参数,从而可以代入分布方程求出概率。例如高斯分布,根据原始数据求出期望u和方差?,然后拟合出高斯分布函数,从而求出原始数据出现的概率;根据数理统计的思想,概率小的可以当做离群点。
优点:
方法简单,无需训练,可以用在小数据集上。
缺点:
发现离群点效果差,离群点对模型参数影响大,造成区分效果差。需要数值化
import java.util.List;
/**
* 实现描述:计算正态分布
*
* @author jin.xu
* @version v1.0.0
* @see
* @since 16-9-9 下午12:02
*/
public class Gauss {
public double getMean(List<Double> dataList) {
double sum = 0;
for (double data : dataList) {
sum += data;
}
double mean = sum;
if (dataList.size() > 0) {
mean = sum / dataList.size();
}
return mean;
}
public double getStd(List<Double> dataList, double mean) {
double sum = 0;
for (double data : dataList) {
sum += (data - mean) * (data - mean);
}
double std = sum;
if (dataList.size() > 0) {
std = sum / dataList.size();
}
return Math.sqrt(std);
}
public double getProbability(double data, double meam, double std) {
double tmp = (1.0 / (Math.sqrt(2 * 3.141592653) * std)) * Math.exp(-(Math.pow(data - meam, 2) / (2 * Math.pow(std, 2))));
return tmp;
}
}
二、基于近邻度
需要度量对象之间的距离,离群点一般是距离大部分数据比较远的点。一般这种方法是计算每个点与其距离最近的k个点的距离和,然后累加起来,这就是K近邻方法。
优点:
原理简单,无需训练,可用在任何数据集
缺点:
需要计算距离,计算量大,K的选定以及多于K个离群点聚集在一起导致误判。
public class KNN {
public static double process(int index,Position position, int k, List<Position> positionList) {
List<Double> distances = Lists.newArrayList();
for (int i = 0; i < positionList.size(); ++i) {
if (i != index) {
distances.add(Math.sqrt(Math.pow((positionList.get(i).getX() - position.getX()), 2)+Math.pow((positionList.get(i).getY()-position.getY()),2)));
}
}
Collections.sort(distances);
k = k < distances.size() ? k : distances.size();
double knnDistance = 0.0;
for (int i = 0; i < k; ++i) {
knnDistance += distances.get(i);
}
return knnDistance;
}
private static class Position{
int x;
int y;
public int getX() {
return x;
}
public void setX(int x) {
this.x = x;
}
public int getY() {
return y;
}
public void setY(int y) {
this.y = y;
}
}
}
三、基于密度
低密度区域的数据点可以当做某种程度上的离群点。基于密度的和基于近邻的是密切相关的,简单来说,密度和近邻的距离成反比。一般的度量公式如下:
density(x,k)表示包含x的k近邻的密度,distance(x,y)表示x到y的距离,N(x,k)表示x的k近邻集合。
优点:
相对准确
缺点:
需要度量密度,需要设定阈值
四、基于聚类
丢弃远离其他聚类簇的小聚类簇。需要给出小聚类簇的大小阈值、聚类簇距离阈值。常用的聚类方法比较多,比如K-means(变种K-models)、EM、层次聚类算法(分裂型和归约型)。具体方法说明可见:漫话数据挖掘。
优点:
缺点:
需要训练,计算量大,原理相对复杂
需要建立适当的模型,需要充足的训练样本
总之异常检测的通用方法大致有4种:基于模型、k近邻、基于密度和基于聚类的。实际使用数据是线上的报价,由于每个SPU下报价有限,聚类不适合,所以用基于模型的和k近邻的做了试验;基于密度的和K近邻差不多,而且需要密度范围的距离阈值,就没有选择。此外,涉及的实验数据是公司的,代码是兴趣使然,所以就不公布具体实验数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22