异常检测原理与实验
最近需要对欺诈报价进行识别处理,简单的模型就是给定很多不同数据集,需要找出每个spu下可能存在的欺诈数据,比如{20,22,30},其中的欺诈数据可能就是30。其实加以抽象,属于异常检测范围。
异常检测是发现与大部分对象不同的对象,其中这些不同的对象称为离群点。一般异常检测的方法主要有数理统计法、数据挖掘方法。一般在预处理阶段发生的异常检测,更多的是依托数理统计的思想完成的。
一、基于模型
首先判断出数据的分布模型,比如某种分布(高斯分布、泊松分布等等)。然后根据原始数据(包括正常点与离群点),算出分布的参数,从而可以代入分布方程求出概率。例如高斯分布,根据原始数据求出期望u和方差?,然后拟合出高斯分布函数,从而求出原始数据出现的概率;根据数理统计的思想,概率小的可以当做离群点。
优点:
方法简单,无需训练,可以用在小数据集上。
缺点:
发现离群点效果差,离群点对模型参数影响大,造成区分效果差。需要数值化
import java.util.List;
/**
* 实现描述:计算正态分布
*
* @author jin.xu
* @version v1.0.0
* @see
* @since 16-9-9 下午12:02
*/
public class Gauss {
public double getMean(List<Double> dataList) {
double sum = 0;
for (double data : dataList) {
sum += data;
}
double mean = sum;
if (dataList.size() > 0) {
mean = sum / dataList.size();
}
return mean;
}
public double getStd(List<Double> dataList, double mean) {
double sum = 0;
for (double data : dataList) {
sum += (data - mean) * (data - mean);
}
double std = sum;
if (dataList.size() > 0) {
std = sum / dataList.size();
}
return Math.sqrt(std);
}
public double getProbability(double data, double meam, double std) {
double tmp = (1.0 / (Math.sqrt(2 * 3.141592653) * std)) * Math.exp(-(Math.pow(data - meam, 2) / (2 * Math.pow(std, 2))));
return tmp;
}
}
二、基于近邻度
需要度量对象之间的距离,离群点一般是距离大部分数据比较远的点。一般这种方法是计算每个点与其距离最近的k个点的距离和,然后累加起来,这就是K近邻方法。
优点:
原理简单,无需训练,可用在任何数据集
缺点:
需要计算距离,计算量大,K的选定以及多于K个离群点聚集在一起导致误判。
public class KNN {
public static double process(int index,Position position, int k, List<Position> positionList) {
List<Double> distances = Lists.newArrayList();
for (int i = 0; i < positionList.size(); ++i) {
if (i != index) {
distances.add(Math.sqrt(Math.pow((positionList.get(i).getX() - position.getX()), 2)+Math.pow((positionList.get(i).getY()-position.getY()),2)));
}
}
Collections.sort(distances);
k = k < distances.size() ? k : distances.size();
double knnDistance = 0.0;
for (int i = 0; i < k; ++i) {
knnDistance += distances.get(i);
}
return knnDistance;
}
private static class Position{
int x;
int y;
public int getX() {
return x;
}
public void setX(int x) {
this.x = x;
}
public int getY() {
return y;
}
public void setY(int y) {
this.y = y;
}
}
}
三、基于密度
低密度区域的数据点可以当做某种程度上的离群点。基于密度的和基于近邻的是密切相关的,简单来说,密度和近邻的距离成反比。一般的度量公式如下:
density(x,k)表示包含x的k近邻的密度,distance(x,y)表示x到y的距离,N(x,k)表示x的k近邻集合。
优点:
相对准确
缺点:
需要度量密度,需要设定阈值
四、基于聚类
丢弃远离其他聚类簇的小聚类簇。需要给出小聚类簇的大小阈值、聚类簇距离阈值。常用的聚类方法比较多,比如K-means(变种K-models)、EM、层次聚类算法(分裂型和归约型)。具体方法说明可见:漫话数据挖掘。
优点:
缺点:
需要训练,计算量大,原理相对复杂
需要建立适当的模型,需要充足的训练样本
总之异常检测的通用方法大致有4种:基于模型、k近邻、基于密度和基于聚类的。实际使用数据是线上的报价,由于每个SPU下报价有限,聚类不适合,所以用基于模型的和k近邻的做了试验;基于密度的和K近邻差不多,而且需要密度范围的距离阈值,就没有选择。此外,涉及的实验数据是公司的,代码是兴趣使然,所以就不公布具体实验数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30