
sas评分卡之没有因变量我也能建模
在建模中,并不是什么时候都有因变量的,那么在没有因变量的情况下,我们应该怎么无耻的还要建模呢,你会说聚类啊,无监督嘛,关联规则嘛。但是我要说的我有ahp(层次分析法)
说好的,假设写了proc iml就要出综合评价法的文章,今天就来说第一个综合评价法—层次分析法,可以在维度以及数据特别紧缺的请况下建模。综合评价就是利用过往的经验给变量人为赋权重。你是不是觉得我说的很扯淡,但是我要用栗子给你明明白白的觉得我在扯淡。
层次分析法的理论
层次分析法(Analytic Hierarchy Process,简称AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。
运用层次分析法建模,大体上可按下面四个步骤进行:
(i)建立递阶层次结构模型;
(ii)构造出各层次中的所有判断矩阵;
(iii)层次单排序及一致性检验;
(iv)层次总排序及一致性检验。
递阶层次结构的建立与特点:
(i)最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。
(ii)中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。
(iii)最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,此也称为措施层或方案层。
每一层次中各元素所支配的元素一般不要超过9 个。这是因为支配的元素过多会给两两比较判断带来困难。
一、构造判断矩阵:
二、层次单排序及一致性检验
判断矩阵的一致性检验的步骤:
三、层次总排序及一致性检验
理论就上面这些,来自:http://blog.sina.com.cn/s/blog_a16714bf0101dhfg.html
我要举一个例子
现在我用一个数据部门的例子来解释这个算法。譬如你们公司有很多家网点或者分行,现在是年终了,领导跟你说现在公司想给你们公司所有分行评个级,给个奖金啥的。现在给你6个维度,就是网点的,成单量,放款金额,逾期率,纯盈利金额,计划达成率,人均交单量。叫你评个级撒。那你怎么办?听我来吹牛逼。
首先第一步,你拿这几个维度给你觉得有经验的领导看下,最少找3个以上,这就要看你们平时跟领导关系好不好,然后给你6个维度重要性排名,取你找的这些领导的排名的平均数作为这个这个变量的最终排名,如果没有领导理你,那你就自己排吧。
假设我就找了我几个领导排了排名,出现下面这张表:
放款金额 |
成单量 |
逾期率 |
人均交单量 |
计划达成率 |
纯盈利金额 |
2.432 |
2.432 |
2.432 |
0.608 |
1.216 |
4.864 |
假设呢,我们公司比较小,暂时只开了四个分行,这四个分行的六大指标如下:
放款金额 |
成单量 |
逾期率 |
人均交单量 |
计划达成率 |
纯盈利金额 |
2.432 |
2.432 |
2.432 |
0.608 |
1.216 |
4.864 |
结合这个图看。
得到的a矩阵。
按照层次分析法的套路,我们现在要计算一个A的最大特征根及其对应的特征向量:
我们用proc iml来计算。
proc iml;
A={1 1 1 4 2 0.5,
1 1 2 4 2 0.5,
1 0.5 1 5 3 0.5,
0.25 0.25 0.2 1 0.333 0.333,
0.5 0.5 0.333 3 1 0.333,
2 2 2 3 3 1};
val=eigval(A);
vec=eigvec(A);
lamda=val[1,1];
w13=vec[ ,1];
print val vec lamda w13;
结果:
val=eigval(a)表示val是a特征值; 用vec =eigvec(a)表示vec是a特征向量。
proc iml;
CI=( 6.261296-6)/(6-1);
CR=CI/1.24;
print CI CR;
结果:
上面的理论知识中已经有公式,翻前面的理论知识看下就知道这个为什么这么算啦。
一致性检验:一致性比率CR=0.0944586<0.1,则一致性检验通过,W13可以作为权向量。
那个1.24是整理产出的,因为是6个维度对应的是1.24。以上就是我算准则层对于方案层的一个矩阵分析。
接下来我们需要作出每个方案层对于决策层的矩阵,那就是6个矩阵。
放款金额对各大分行的矩阵。矩阵怎么来呢?
方案 准则 |
中国分行 |
俄罗斯分行 |
美国分行 |
英国分行 |
放款金额 |
1.663 |
4.989 |
0.8315 |
0.8315 |
用这个数据来组成矩阵,套路跟刚才那个准则层的差不多。只是维度变了:
我做了个表格:
跟刚才的准则层一样,也需要算出矩阵的特征向量以及最大特征根。
proc iml;
B1={1 0.333 2 2,
3 1 5 4,
0.5 0.2 1 0.5,
0.5 0.25 2 1};
val=eigval(B1);
vec=eigvec(B1);
lamda=val[1,1];
w31=vec[ ,1];
print val vec lamda w31;
结果:
/*一致性检验:*/
proc iml;
CI=( 4.0563715-4)/(4-1);
CR=CI/0.90;
print CI CR;
结果:
一致性检验:一致性比率CR=0.0208783<0.1,则一致性检验通过,W31可以作为权向量。
一次类推算出其余的6个。
是矩阵的最大特征根。
6个矩阵的一致性检验:
一致性比率CR1=0.0208783<0.1,则一致性检验通过,W31可以作为权向量。
一致性比率CR2=0.0437436<0.1,则一致性检验通过,W32可以作为权向量。
一致性比率CR3= 0.0016285<0.1,则一致性检验通过,W33可以作为权向量。
一致性比率CR4=0.0055705<0.1,则一致性检验通过,W34可以作为权向量。
一致性比率CR5=0.0297501 <0.1,则一致性检验通过,W35可以作为权向量。
一致性比率CR6=0.0936616<0.1,则一致性检验通过,W36可以作为权向量。
将每个归一化的w系列的组合起来之后,算出权重w之后,再跟原来的准则层的w13相乘,既可以得出每个分行的得分。
proc iml;
W13={0.170,0.197,0.180,0.047,0.120,0.286};
W31={0.214,0.550,0.094,0.142};
W32={0.468,0.211,0.061,0.260};
W33={0.190,0.364,0.066,0.380};
W34={0.400,0.379,0.081,0.140};
W35={0.068,0.115,0.181,0.636};
W36={0.544,0.125,0.069,0.262};
W=W31||W32||W33||W34||W35||W36;
WW=W*W13;
print WW;
结果:
那么就是中国分行是0.34532,俄罗斯分行是0.26795,美国分行是0.85138,英国分行是0.301592。这时候我就报告领导,中国分行的是评级中的第一名。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08