
在利用深度学习模型解决有监督问题时,比如分类、回归、去噪等,我们一般的思路如下:
1、信息流forward propagation,直到输出端;
2、定义损失函数L(x, y | theta);
3、误差信号back propagation。采用数学理论中的“链式法则”,求L(x, y | theta)关于参数theta的梯度;
4、利用最优化方法(比如随机梯度下降法),进行参数更新;
5、重复步骤3、4,直到收敛为止;
在第2步中,我们通常会见到多种损失函数的定义方法,常见的有均方误差(error of mean
square)、最大似然误差(maximum likelihood estimate)、最大后验概率(maximum posterior
probability)、交叉熵损失函数(cross entropy
loss),下面我们就来理清他们的区别和联系。一般地,一个机器学习模型选择哪种损失函数,是凭借经验而定的,没有什么特定的标准。具体来说,
(1)均方误差是一种较早的损失函数定义方法,它衡量的是两个分布对应维度的差异性之和。说点题外话,与之非常接近的一种相似性度量标准“余弦角”,则衡量的是两个分布整体的相似性,也即把两个向量分别作为一个整体,计算出的夹角作为其相似性大小的判断依据,读者可以认真体会这两种相似性判断标准的差异;
(2)最大似然误差是从概率的角度,求解出能完美拟合训练样例的模型参数theta,使得概率p(y | x, theta)最大化;
(3)最大化后验概率,即使得概率p(theta | x,
y)最大化,实际上也等价于带正则化项的最大似然概率(详细的数学推导可以参见Bishop 的Pattern Recognition And
Machine Learning),它考虑了先验信息,通过对参数值的大小进行约束来防止“过拟合”;
(4)交叉熵损失函数,衡量的是两个分布p、q的相似性。在给定集合上两个分布p和q的cross entropy定义如下:
其中,H(p)是p的熵,Dkl(p||q)表示KL-divergence。对于离散化的分布p和q,
在机器学习应用中,p一般表示样例的标签的真实分布,为确定值,故最小化交叉熵和最小化KL-devergence是等价的,只不过之间相差了一个常数。
值得一提的是,在分类问题中,交叉熵的本质就是似然函数的最大化。证明如下:
记带标签的样例为(x, y), 其中x表示输入特征向量,y=[y1, y2, …, yc]表示真实标签的one-hot表示,y_=[y1, y2, …, yc]表示模型输出的分布,c表示样例输出的类别数,那么。
(1)对于二分类问题,p(x)=[1, 0],q(x)=[y1, y2],y1=p(y=1|x)表示模型输出的真实概率,交叉熵H(p, q)=-(1*y1+0*y2)=-y1,显然此时交叉熵的最小化等价于似然函数的最大化;
(2)对于多分类问题, 假设p(x)=[0, 0, 0, …, 1, 0, 0],q(x)=[y1, y2, y3, …, yk, y(k+1), y(k+2)],即表示真实样例标签为第k类,yk=p(y=k|x)表示模型输出为第k类的概率,交叉熵H(p,q)=-(0*y1+0*y2+0*y3+…+1*yk+0*y(k+1)+0*y(k+2)) = -yk, 此时同上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10