十大垂直行业分析 大数据应用正在面临的挑战
大数据已经成为一个热词,大数据时代已经到了,目前来说,大多数公司还是希望拥有几个大数据项目,为公司带来更好地效益,比如,实现公司的主要目标,包括增强客户服务体验的同时降低公司成本。不过,目前来说,使用大数据的同时防止数据机密泄露是大数据项目亟需解决的问题,大数据要如何提高安全性。
如何明确大数据在行业应用中是否存在真正的价值,如何去评估市场的规模,如何开发使用大数据的新服务和新产品,如何使用大数据方案,考虑到这一点,了解大数据的全景及其在不同行业的应用,将有助于更好地了解你的角色和未来不同行业的发展。
本文中将分析使用大数据的10个垂直行业,这些行业面临的行业挑战以及大数据如何解决这些挑战。包括一些大型数据提供商在特定行业提供解决方案的案例。
1、通讯,媒体和娱乐
由于消费者期望有不同格式和各种设备的多媒体需求,通信,媒体和娱乐行业的一些重大数据挑战包括:
收集,分析和利用消费者洞察
利用移动和社交媒体内容
了解实时的,媒体内容的使用情况
大数据在通信,媒体和娱乐行业的应用 该行业的企业同时分析客户数据以及行为数据,以创建详细的客户资料,可用于:
为不同的目标受众创建内容
根据需要推荐内容
2、银行业与证券业
一项研究对10个顶级投资和零售业务银行的16个项目进行了调查,结果显示:行业的挑战包括:证券欺诈预警,超高频金融数据分析,信用卡欺诈检测,审计跟踪归档,企业信用风险报告,贸易可见度,客户数据转换, 交易的社会分析,IT运营分析和IT策略合规性分析等。
大数据在银行业和证券业的应用 证券交易委员会(SEC)正在使用大数据来监控金融市场活动。 他们目前正在使用网络分析和自然语言处理器来捕捉金融市场的非法交易活动。
金融市场的零售商,大银行,对冲基金和其他所谓的“大男孩”使用大数据进行高频交易,交易前决策支持分析,情绪测量,预测分析等方面的交易分析。
该行业还严重依赖大数据进行风险分析,包括反洗钱,企业风险管理,“了解你的客户”和减少欺诈。 该行业特定的大数据提供商包括:1010data,Panopticon软件,Streambase Systems,Nice Actimize和Quartet FS。
3、衡量内容效果
一个例子是温布尔登网球锦标赛,利用大数据实时对电视,移动和网络用户观看网球比赛的详细情绪分析。 Spotify是按需音乐服务,使用hadoop大数据分析,从全球数百万用户收集数据,然后使用分析的数据向个人用户提供个性化的音乐推荐。 亚马逊Prime通过在一站式商店中提供,视频,音乐和Kindle书籍提供良好的客户体验,也大量利用大数据。 这个行业的大数据提供商包括:Infochimps,Splunk,Pervasive Software和Visible Measures。
4、医疗保健
医疗保健部门获得了大量的数据,但一直没能使用数据来遏制医疗保健成本上升,提高医疗保健收益,提高系统效率。
这主要是因为电子数据不足或不可用。 另外,保存健康相关信息的医疗保健数据库很难与医疗领域有用模式的数据链接起来。
其他与大数据相关的挑战包括:将患者排除在决策过程之外,以及使用来自不同渠道的容易获得的传感器的数据。
以色列贝斯的一些医院正在使用数百万病人从手机应用收集的数据,让医生可以使用循证医学,而不是像传统医院一样,对病人进行医疗/实验室检测。 有些测试是有效的,但大部分是昂贵的并且通常是低效的。
佛罗里达大学使用免费公共卫生数据和Google地图创建视觉数据,可以更快速地识别和有效分析医疗信息,用于跟踪慢性病的传播。
奥巴马医保方案也以多种方式利用了大量数据。
该行业的大数据提供商包括:Recombinant Data,Humedica,Explorys和Cerner
从技术角度来看,教育行业面临的一个重大挑战是将来自不同来源和供应商的大数据整合其中,并将其用于一个数据的平台。 从实践的角度来看,教育从业者和机构必须学习新的数据管理和分析工具。 在技术方面,整合来自不同来源的数据,不同平台和原本不相互合作的不同供应商都面临挑战。 在政治上,与用于教育目的的大数据相关的隐私和个人数据保护问题是一个挑战。
大数据在高等教育中的应用相当显着。例如,塔斯马尼亚大学。一个拥有26000多名学生的澳大利亚大学,部署了一个学习和管理系统,学生登录系统,系统追踪学生花费的时间以及学生的整体进度等。
在教育中使用大数据的不同用例中,它也用于衡量教师教学的有效性,以确保学生和教师的良好体验。教师的表现可以根据学生人数,学科人数,学生期望,行为分类和其他几个变量进行微调和衡量。
在政府层面上,美国教育部的教育技术办公室正在使用大数据来开发分析数据,以帮助纠正选错在线课程的学生,点击模式也被用来检测学生学习时的无聊程度。
这个行业的大数据提供商包括:Knewton和Carnegie Learning和MyFit / Naviance。
5、政府
在政府中,最大的挑战是不同政府部门和附属机构大数据的整合和互操作性。 大数据在政府中的应用 在公共服务方面,大数据应用范围非常广泛,包括能源勘探,金融市场分析,欺诈检测,健康相关研究和环境保护。
一些更具体的例子如下:
大数据用于分析社会保障局(SSA)提供的非结构化数据的大量社会残疾索赔。用于分析快速有效地处理医疗信息,以加快决策速度,并检测可疑或欺诈性声明。
食品和药物管理局(FDA)正在使用大量数据来检测和研究食物相关疾病和疾病的模式。从而做出更快的反应,提供更快的治疗,减少死亡。
国土安全部使用大数据分为几种不同的用例。 大数据来自不同政府机构的分析,以及用于保护国家安全的数据。
这个行业的大数据提供商包括:Digital Reasoning,Socrata和惠普。
6、制造业和自然资源开采业
对石油,农产品,矿产,天然气,金属等自然资源的需求日益增加,导致数据量的增加,复杂性和提高速度是一个挑战。
同样,来自制造业的大量数据尚未得到开发。 这种信息的利用不足阻碍了产品质量提高,能源效率和可靠性的提升,以及更好的利润率。
在自然资源行业,通过大数据可以利用地理空间数据,图形数据,文本和时间数据中摄取和整合大量数据建立预测模型,帮助做出决策,应用的领域包括: 地震解释和油藏表征。
大数据也被用于解决当今制造业所面临的挑战,懿获得竞争优势。
德勤的一项研究显示了目前使用的大数据的情况以及将来的预期的用于供应链功能的使用情况。
该行业的大数据提供商包括:CSC,Aspen Technology,Invensys和Pentaho。
7、零售和批发贸易
从传统的实体零售商和批发商到现在的电子商务,行业已经收集了大量的数据。 来自客户会员卡,POS扫描仪,RFID等的这些数据并没有被用于整体上改善客户体验。所有改变和改进都相当缓慢。
来自客户忠诚度数据,POS,商店库存,本地人口统计数据的大数据将继续由零售和批发商店收集。
在纽约大展零售贸易大会上,像微软,思科和IBM这样的公司表示,零售行业需要利用大数据进行分析和其他用途,包括:
通过购物模式,本地活动等数据优化员工配置
减少欺诈
及时分析库存
社交媒体的使用也具有很大的潜在用途,并且将以缓慢的速度地被实体店采用。社交媒体用于客户探索,客户保留,产品推广等。
这个行业的大数据提供商包括:First Retail,First Insight,Fujitsu,Infor,Epicor和Vistex。
8、保险业
主要挑战包括缺乏个性化服务,缺乏个性化定价和缺乏针对新细分市场和特定细分市场的有针对性的服务。
在由Marketforce进行的调查中,保险业专业人士确定的挑战包括数据不足带来的利润损失,以及渴望更好的洞察力。
业界已经在使用大数据,通过从社交媒体,支持GPS的设备和监控录像中得到的数据分析和预测客户行为,为透明和简单的产品提供客户洞察。 大数据还可以保护公司更好的提高客户留存。
在索赔管理方面,大数据的预测分析已被用于提供更快的服务,因为大量的数据可以在承保阶段进行特别分析。 欺诈检测也得到了加强。
通过数字渠道和社交媒体的大量数据,索赔周期的索赔实时监控已被用于为保险公司提供见解。
该行业的大数据提供商包括:Sprint,高通,Octo Telematics,The Climate Corp。
9、交通
行业具体挑战
政府,私人机构和个人的一些大数据应用包括:
政府使用大数据:交通管制,路线规划,智能交通系统,拥堵管理(预测交通状况)
私营部门在运输中使用大数据:收入管理,技术改进,物流和竞争优势(通过整合出货量和优化货运)
个人使用大数据包括:路线规划节省燃料和时间,旅游安排等。
该行业的大数据提供商包括:高通和Manhattan Associates。
10、能源和公用事业
电网资产的60%将在十年内需要更换
全球风电装机容量同比增长12.4%
智能电表成为主流,而消费者要求更多的控制和了解能源消耗。
智能电表读取器允许几乎每15分钟收集数据,而不是每天用旧的读表器收集数据。 这种细粒度数据被用于更好地分析实用程序的消耗,这允许改进客户反馈和更好地控制公用事业的使用。 在公用事业公司,使用大数据还可以提供更好的资产和人力资源管理,这对于识别错误和在完成失败之前尽快进行纠正是有用的。 这个行业的大数据提供商包括:Alstom Siemens ABB和Cloudera。
最后,通过分析总结发现,在这些垂直行业中大数据的应用领域有着大量的支出,要利用大数据机会,迎接挑战,必须熟悉并了解行业特定的挑战、了解所在行业的数据特征,了解在哪里会产生大数据支出以及如何通过自己的决绝方案去满足市场的需求;同时,必须对自己所在的行业有足够的专业知识才能去对大数据的应用做到最大化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30