南大大数据算法 “算出”室友
校方称近八成新生填写了调查问卷 以习惯爱好匹配室友是为了降低产生矛盾的概率
近日,南京大学采用大数据算法,为今年入学的新生匹配室友的消息引发关注。日前,北京青年报记者从该校学生工作处获悉,约3300名新生中,近八成学生填写了问卷。根据问卷中涉及到的生活习惯、个人卫生情况、个性化选择及个人兴趣爱好等选项,学校用大数据算法分析学生的相似程度,以此划分寝室、匹配室友。学生工作处负责人解释,这样做,一方面是为了帮助新生更好地适应集体生活,另一方面降低室友之间产生矛盾的概率。
开学在即,如何尽快适应大学校园生活,在集体生活中与室友和谐相处,是每个新生面临的第一道“门槛”。按照惯例,不少学校在为学生分配宿舍时,会考量新生的生源地、年龄,或是自由匹配产生室友。但近日,南京大学采用大数据算法,考量学生的生活习惯和兴趣爱好,并以此匹配室友的方式,为新生提供了一种新的可能。
对此,大多数网友认为学校的做法是人性化的,可以接触到趣味相投的人,也可以避免一些不必要的矛盾。但也有网友担心:匹配时会不会把一些生活习惯不好的学生聚集到了一起,产生负面影响。还有学生认为,集体生活应该和性格不同的人相处,以提前适应未来的社会生活。
|
南大2018级人文科学实验班的学生刘韵(化名)告诉北青报记者,此前,学校新生手册里专门提到会对住宿问题进行问卷调查。“学长学姐和迎新公号也提醒新生这件事。填写的时候,觉得问题都挺实际的,而且每个同学有3次填写更改的机会。”刘韵说,南大分宿舍的方式也引来不少高中同学的羡慕,“他们分宿舍都是按照学号或者姓氏来的,很少按照兴趣爱好分。”刘韵说,自己喜欢打篮球、看综艺,之前特别担心遇到乱拿东西、不讲卫生的室友,填完问卷“心里踏实多了”,他希望能遇到性格开朗的学霸型室友。
北青报记者了解到,这项活动经南大校方牵头,具体操作由该校学生工作处负责。学生工作处郭亚敏老师介绍,去年学校通过网络问卷调查,给新生按照生活习惯分宿舍,效果显著。在此基础上,学校经过一年多的调研,在老生间征集方案,产生了今年的优化升级版本,新添加了如“是否愿意为室友拿快递”、“听歌声音大不大”、“空调喜欢开多少度”这类细节问题。
对话
校方:让学生更好地适应集体生活
谈及大数据分配宿舍室友一事,郭亚敏老师在接受北青报记者采访时说“这样的方式不是拍脑袋想出来的”,而是有一定依据。至于网友的担心,郭老师解释,匹配时会冲淡单一方面的考量,不是要将习惯和爱好完全一致的学生分在一起,而是将差异特别大的学生区分开。
问卷新增“兴趣爱好”的选项
北青报:新生什么时候报到,寝室已经分好了吗?
郭亚敏:8月25日、26日报到,马上就来了。新生大概有3300人左右,八成学生是按照大数据算法给他们分配的宿舍和室友,因为他们在新生网上提前填写了问卷调查。余下的学生采取了随机分配的方式。不过,要等他们入学以后,才能进一步反馈对宿舍和室友是否满意。
北青报:大数据算法匹配室友,具体怎么操作?
郭亚敏:学生先填写问卷,收集到问卷选项的信息后,学校使用大数据推荐算法,通过系统对信息进行量化处理,然后给学生分配室友。
北青报:问卷具体包含哪几个方面的内容?
郭亚敏:第一是生活习惯。包括你的作息时间,冬天夏天使用空调的习惯,是希望热一点还是冷一点。第二是卫生习惯。比如:什么时候整理内务、清理桌椅、打扫垃圾、什么时候洗澡。第三是个性化的问题。比如,是否吸烟,愿不愿意帮室友拿快递、外卖,电费是均摊还是轮流支付,你的肥皂、洗衣粉别人拿来用你有没有意见。第四是个人爱好。(我们)希望宿舍里学生之间有共同话题。比如说一个学生喜欢看电影另一个喜欢听音乐,他们两个能不能放一起,有多大概率可以放一起,这个是要算的。
降低学生入校后产生矛盾的概率
北青报:问卷选项的设置和这种匹配室友的方式,有什么依据吗?
郭亚敏:2017年新生入学时,学校就给部分新生用大数据算法匹配了室友,但参与的新生只有3成左右,规模没有今年这么大。那么这个效果到底怎么样?从后来的跟踪反馈的结果来看,用大数据匹配宿舍的学生,整体满意度比随机分配的学生,高出10个百分点。
因为效果不错,加上学生们最清楚宿舍生活中哪些因素容易造成矛盾,之后我们对16、17级的所有学生做了调研,丰富了问卷。比如,补充了包括听歌声音大小,愿不愿意帮室友拿快递,自习的时间,空调温度高低的细节,都是学生自己总结的,相对来说更真实可信。
北青报:为新生匹配室友的初衷是什么?
郭亚敏:因为今年的00后新生占大多数,基本上都是独生子女,从小到大没有什么集体生活的经验,这样做是让学生更好地适应学校的集体生活。从学校管理上来说,也是为了降低学生入校后产生矛盾的概率。他们要在这里待4年,宿舍矛盾对孩子的负面影响是很大的,学生宿舍存在的隐患、矛盾,也远远大于我们掌握的情况。近些年也有不少室友间互相报复的极端案例。我们希望通过前瞻性的措施,从管理上缓解矛盾,尽量消除发生极端事件的可能性。
希望将差异巨大的学生分开
北青报:大数据匹配室友的消息,也在网上引发一些争议。
郭亚敏:是的,我们也了解到网上有两种不同声音:大多数人会觉得好,认为是人性化操作。同样也有反对的声音,觉得我们剥夺了孩子多样化、差异化交友的权利。甚至有人说,如果一个宿舍的人都晚睡、都抽烟,放在一起是不是合适。
这一点需要解释一下。我们问卷的问题设置得很细,选项也不是简单的“是”和“否”,有“喜欢”、“不喜欢”、“没什么了解”、“没接触过”这些。进一步说,最终要分配时,考察两个人是不是很接近不是从单一的维度去考虑的。不会说两个孩子都写了“我晚睡”,就把他们放一起,还有很多其他因素的考量。而且四类问题的衡量权重是相当的,不会刻意突出哪一方面。因为现在引发矛盾的因素很多元化,你不帮我拿快递都有可能引发矛盾。
北青报:预期的效果是什么样的?
郭亚敏:从最终的效果来看,是要在保证宿舍里的孩子有一定差异性的同时,把两个差异性特别大的人分开,因为差异过大容易产生和激化矛盾。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30