南大大数据算法 “算出”室友
校方称近八成新生填写了调查问卷 以习惯爱好匹配室友是为了降低产生矛盾的概率
近日,南京大学采用大数据算法,为今年入学的新生匹配室友的消息引发关注。日前,北京青年报记者从该校学生工作处获悉,约3300名新生中,近八成学生填写了问卷。根据问卷中涉及到的生活习惯、个人卫生情况、个性化选择及个人兴趣爱好等选项,学校用大数据算法分析学生的相似程度,以此划分寝室、匹配室友。学生工作处负责人解释,这样做,一方面是为了帮助新生更好地适应集体生活,另一方面降低室友之间产生矛盾的概率。
开学在即,如何尽快适应大学校园生活,在集体生活中与室友和谐相处,是每个新生面临的第一道“门槛”。按照惯例,不少学校在为学生分配宿舍时,会考量新生的生源地、年龄,或是自由匹配产生室友。但近日,南京大学采用大数据算法,考量学生的生活习惯和兴趣爱好,并以此匹配室友的方式,为新生提供了一种新的可能。
对此,大多数网友认为学校的做法是人性化的,可以接触到趣味相投的人,也可以避免一些不必要的矛盾。但也有网友担心:匹配时会不会把一些生活习惯不好的学生聚集到了一起,产生负面影响。还有学生认为,集体生活应该和性格不同的人相处,以提前适应未来的社会生活。
|
南大2018级人文科学实验班的学生刘韵(化名)告诉北青报记者,此前,学校新生手册里专门提到会对住宿问题进行问卷调查。“学长学姐和迎新公号也提醒新生这件事。填写的时候,觉得问题都挺实际的,而且每个同学有3次填写更改的机会。”刘韵说,南大分宿舍的方式也引来不少高中同学的羡慕,“他们分宿舍都是按照学号或者姓氏来的,很少按照兴趣爱好分。”刘韵说,自己喜欢打篮球、看综艺,之前特别担心遇到乱拿东西、不讲卫生的室友,填完问卷“心里踏实多了”,他希望能遇到性格开朗的学霸型室友。
北青报记者了解到,这项活动经南大校方牵头,具体操作由该校学生工作处负责。学生工作处郭亚敏老师介绍,去年学校通过网络问卷调查,给新生按照生活习惯分宿舍,效果显著。在此基础上,学校经过一年多的调研,在老生间征集方案,产生了今年的优化升级版本,新添加了如“是否愿意为室友拿快递”、“听歌声音大不大”、“空调喜欢开多少度”这类细节问题。
对话
校方:让学生更好地适应集体生活
谈及大数据分配宿舍室友一事,郭亚敏老师在接受北青报记者采访时说“这样的方式不是拍脑袋想出来的”,而是有一定依据。至于网友的担心,郭老师解释,匹配时会冲淡单一方面的考量,不是要将习惯和爱好完全一致的学生分在一起,而是将差异特别大的学生区分开。
问卷新增“兴趣爱好”的选项
北青报:新生什么时候报到,寝室已经分好了吗?
郭亚敏:8月25日、26日报到,马上就来了。新生大概有3300人左右,八成学生是按照大数据算法给他们分配的宿舍和室友,因为他们在新生网上提前填写了问卷调查。余下的学生采取了随机分配的方式。不过,要等他们入学以后,才能进一步反馈对宿舍和室友是否满意。
北青报:大数据算法匹配室友,具体怎么操作?
郭亚敏:学生先填写问卷,收集到问卷选项的信息后,学校使用大数据推荐算法,通过系统对信息进行量化处理,然后给学生分配室友。
北青报:问卷具体包含哪几个方面的内容?
郭亚敏:第一是生活习惯。包括你的作息时间,冬天夏天使用空调的习惯,是希望热一点还是冷一点。第二是卫生习惯。比如:什么时候整理内务、清理桌椅、打扫垃圾、什么时候洗澡。第三是个性化的问题。比如,是否吸烟,愿不愿意帮室友拿快递、外卖,电费是均摊还是轮流支付,你的肥皂、洗衣粉别人拿来用你有没有意见。第四是个人爱好。(我们)希望宿舍里学生之间有共同话题。比如说一个学生喜欢看电影另一个喜欢听音乐,他们两个能不能放一起,有多大概率可以放一起,这个是要算的。
降低学生入校后产生矛盾的概率
北青报:问卷选项的设置和这种匹配室友的方式,有什么依据吗?
郭亚敏:2017年新生入学时,学校就给部分新生用大数据算法匹配了室友,但参与的新生只有3成左右,规模没有今年这么大。那么这个效果到底怎么样?从后来的跟踪反馈的结果来看,用大数据匹配宿舍的学生,整体满意度比随机分配的学生,高出10个百分点。
因为效果不错,加上学生们最清楚宿舍生活中哪些因素容易造成矛盾,之后我们对16、17级的所有学生做了调研,丰富了问卷。比如,补充了包括听歌声音大小,愿不愿意帮室友拿快递,自习的时间,空调温度高低的细节,都是学生自己总结的,相对来说更真实可信。
北青报:为新生匹配室友的初衷是什么?
郭亚敏:因为今年的00后新生占大多数,基本上都是独生子女,从小到大没有什么集体生活的经验,这样做是让学生更好地适应学校的集体生活。从学校管理上来说,也是为了降低学生入校后产生矛盾的概率。他们要在这里待4年,宿舍矛盾对孩子的负面影响是很大的,学生宿舍存在的隐患、矛盾,也远远大于我们掌握的情况。近些年也有不少室友间互相报复的极端案例。我们希望通过前瞻性的措施,从管理上缓解矛盾,尽量消除发生极端事件的可能性。
希望将差异巨大的学生分开
北青报:大数据匹配室友的消息,也在网上引发一些争议。
郭亚敏:是的,我们也了解到网上有两种不同声音:大多数人会觉得好,认为是人性化操作。同样也有反对的声音,觉得我们剥夺了孩子多样化、差异化交友的权利。甚至有人说,如果一个宿舍的人都晚睡、都抽烟,放在一起是不是合适。
这一点需要解释一下。我们问卷的问题设置得很细,选项也不是简单的“是”和“否”,有“喜欢”、“不喜欢”、“没什么了解”、“没接触过”这些。进一步说,最终要分配时,考察两个人是不是很接近不是从单一的维度去考虑的。不会说两个孩子都写了“我晚睡”,就把他们放一起,还有很多其他因素的考量。而且四类问题的衡量权重是相当的,不会刻意突出哪一方面。因为现在引发矛盾的因素很多元化,你不帮我拿快递都有可能引发矛盾。
北青报:预期的效果是什么样的?
郭亚敏:从最终的效果来看,是要在保证宿舍里的孩子有一定差异性的同时,把两个差异性特别大的人分开,因为差异过大容易产生和激化矛盾。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31