为用户提供建议的平台。协同过滤算法是推荐系统中使用的主要算法之一。这种算法简单、高效;然而,数据的稀疏性和方法的可扩展性限制了这些算法的性能,并且很难进一步提高推荐结果的质量。因此,提出了一种将协同过滤推荐算法与深度学习技术相结合的模型,其中包括两部分。首先,该模型采用基于二次多项式回归模型的特征表示方法,通过改进传统的矩阵因子分解算法,更准确地获得潜在特征。这些潜在特征被认为是深层神经网络模型的输入数据。该模型的第二部分,用于预测评价分数。最后,通过与其他三个公共数据集的推荐算法进行比较,验证了我们的模型可以有效地提高推荐性能。
随着人工智能技术的发展,越来越多的智能产品正在被应用。日常生活,为各种各样的人提供方便。个性化推荐系统的智能推荐功能可以有效地为用户提供服务。从海量的互联网数据中获取有价值的
推荐算法是推荐系统中最重要的部分,直接决定推荐结果的质量和性能。的系统。常用的算法可以分为两大类:基于内容的[1]方法和协同过滤[2]-[4]方法。基于内容的方法通过对额外信息(如文档内容、用户配置文件和项目属性)的分析来构建用户和项目的肖像(描述),从而提出建议。在大多数情况下,用来构建肖像的信息很难获得甚至是伪造的;因此,它的性能而且应用范围受到很大的限制。协同过滤算法是推荐系统中应用最广泛的算法;它们是不同的从基于内容的方法中,他们不需要关于用户或项目的信息,他们只基于用户和诸如点击、浏览和评级等项目的交互信息做出准确的推荐。虽然该方法简单有效,随着互联网的快速发展,数据的稀疏性限制了算法的性能;因此,研究人员已经开始寻找其他方法来提高推荐性能。
近年来,深度神经网络(DNNs)在计算机视觉[5]、语音识别[6]、自然语言处理[7]等各个领域取得了巨大的成功。然而,对这些技术的推荐系统研究很少。一些研究人员
最近提出的基于深度学习的推荐模型,但大多数模型都使用了附加的特性,比如文本内容和音频信息,以提高它们的性能。鉴于上述信息可能难以获得大多数推荐系统,本文提出了一种基于DNNs的推荐模型,该模型不需要除了用户和项目之间的交互之外的任何额外信息。我们模型的主要框架如图1所示。首先,我们使用用户项目评级矩阵来获取用户和项目的特性,我们将在第3节中讨论。然后,我们将这些特征作为神经网络的输入。在输出层中,我们将获得一些概率值,这些值表示用户可能给出的分数的概率。最后,以概率最高的分数作为预测结果。通过对三种公共数据集的常用和最先进的算法进行比较,证明该模型能够有效地提高推荐精度。
本文的其余部分组织如下:在第2节中,我们介绍了基于DNNs的CF方法和一些推荐算法。我们将在第3节详细描述我们的模型。第4节包含一些实验评估和讨论。在第5节中我们提供了一个简短的结论。
Breese等[8]将CF算法分为两类:基于内存的方法和基于模型的方法。基于内存的CF使用用户[9]或项目[10]之间的相似性来提出建议。由于该方法有效且易于实现,因此得到了广泛的应用,但随着推荐系统规模的增大,相似度的计算也变得越来越困难;此外,高数据稀疏性也限制了该方法的性能。
为了解决上述问题,提出了许多基于模型的推荐算法,如潜在语义模型[11]、贝叶斯模型[12]、基于回归的模型[13]、聚类模型[14]、矩阵因子分解模型[15]。在各种CF技术中,矩阵分解是最常用的方法。该方法将用户和项映射到具有相同维度的向量,该维度表示用户或项的潜在特性。该方法的代表性工作包括非参数概率主成分分析(NPCA)[16]、奇异值分解(SVD)[17]、概率矩阵分解(PMF)[18]。然而,通过矩阵分解方法学习的潜在特征往往不够有效,特别是当评价矩阵非常稀疏的时候。
另一方面,深度学习技术最近在计算机视觉和自然语言处理领域取得了巨大的成功。这些技术在学习特征表现方面表现出极大的潜力;因此,研究人员已经开始将深度学习方法应用于推荐领域。Salakhutdinov等[19]使用受限的玻尔兹曼机代替传统的矩阵分解来执行CF,而Georgiev和Nakov[20]通过合并两者之间的关联来扩展工作。用户和项目之间。还有其他一些基于深度学习的研究方法,但他们主要关注[21]和[22]等音乐推荐。这些研究分别使用传统的卷积神经网络和深度信任网络来学习音乐的内容特征。除了音乐推荐,Wang等[23]提出了采用深度学习模型获取内容特征的层次贝叶斯模型,并采用传统的CF模型来处理评级信息。正如我们所看到的,这些基于深度学习技术的方法或多或少地通过学习诸如文本内容之类的内容特征来提出建议。以及音乐的光谱。当我们无法获得物品的内容时,这些方法是不适用的。因此,他等[24]提出了一种基于深度学习的新的推荐框架。在他们的方法中,用户和项目通过其ID的一热编码表示;显然,该方法只在模型的训练阶段使用ID信息,这使得大量的先验信息无法使用。因此,特征学习的有效性难以保证。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29随着技术的飞速发展与行业的持续变革,不少人心中都存有疑问:到了 2025 年,数据分析师还有前途吗?给你分享一篇阿里P8大佬最近 ...
2024-12-29如何构建数据分析整体框架? 要让数据分析发挥其最大效能,建立一个清晰、完善的整体框架至关重要。今天,就让我们一同深入探讨 ...
2024-12-27AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25