关于情感分析,你不得不知道的11件事
近来,关于情感分析的研究一直被大家所津津乐道,然而关于这项分析方法究竟有多大的实用性,则是众说纷纭。有人认为情感分析堪比打开人类市场研究新世界大门的钥匙,而另一些人则认为,这项技术只是骗人的万灵油,甚至与占卜无异。那么,究竟谁是对的呢?
相较而言,我(笔者)更倾向于站在前者的阵营中。基于文本分析,自动情感分析技术为基于李克特量表的传统分析方法(Likert-reliant methodologies)注入了新的动力,使得研究人员能通过社群倾听技术实时掌控客户反馈的倾向变化,并由此实现了对客户心声的深入挖掘。
对于后者的阵营,我认为他们对情感分析产生质疑的原因可能来自于对这种分析方法实现能力与局限性的认识扭曲。这样的认识扭曲也许是由于某些能力不足的解决方案供应商造成的,不过不管它们究竟来自何方,我都会倾力而为去揭穿它们,还原一个有真正实际意义的情感分析技术。
我们目标是鼓励适当的使用情感分析技术并防止滥用。为了做到这点,对市场教育的呼唤十分重要,我通过会议的形式做了很多这样的事,在今年7月15号到16号的纽约情感分析研讨会上,我特地点明了这样十一件情感分析研究者必须知道的事:
1)在情感分析中,通过直接匹配词典来查找词汇是一种简单明了的方法,也但略显粗俗。词的意思往往会根据句式、语境以及上下文之间的关联而发生变化,进行情感分析时我们需要将语言学与统计学的方法都应用到其中。
2)文档层面的情感分析或许正在面临过时。我们情感分析的目标应该关注于实体(entity)、概念(concept)以及主题(topic)的层面。(例如,一部iPhone6是一个实体,iPhone是一个概念范畴,而智能手机则是它所属的主题)
3)“情感”的一般语言定义包括态度(attitude)、意见(opinion)、感觉(feelings)和情绪(emotion)。最先进的情感分析技术可以让你超越正负面倾向得分的局限,根据情绪——如快乐、惊讶、恐惧、厌恶、愤怒、悲伤等对文本情感进行评价,而不是仅仅是一个表达程度的分数。
4)请将眼界放宽:情感分析是情感计算(Affective computing)大家族的一份子,这个家族涉及到了所有与人类情感相关、来自人类情感或是对人类情感产生影响的现象计算研究。情感分析与家族中的其他伙伴皆有所联系,但在技术和方法上有着较为明显的区别。
5)并非所有的情感都是平等的。不论是情感的倾向还是强度,我们都需要努力去理解。同时,研究情感如何转化为行动也具有同样重要的意义。
6)不论你是否在项目中使用了语言工程、统计模型与机器学习方法,在很多情况下,也许针对特定领域训练合适的模型,才是模型优化的关键。
7)必须注意那些有关于准确率的说法。对于模型的准确性,这世界上不存在绝对的衡量标准,因此在度量模型的准确性时,我们总会遇到各种各样的麻烦。正因如此,有的解决方案供应商们甚至可能在提出分析模型之后对模型准确性的测量过程避而不谈。一种公认可行的准确度测量方法是将模型结果与一份经过完全精准的人工注释/分类的语料进行对比,这也意味着我们需要让人工和机器同时去进行一项庞大的语料分析工作,再进行二者匹配程度的计算。但是当你真的去尝试这样的做法时,所谓人工一方作出的判断究竟是对是错,同样也很难说明清楚。与此同时,面向不同层面的文本分析软件之间也很难进行准确度的对比,例如有些软件只做了文档层面的分析,而另一些则能够对实体和概念进行了解析,我们能说在实体层面具有70%准确率的软件就优于在文档层面具有97%准确率的软件吗?
8)文本是最常见的情感数据来源,但它并不是唯一的一个。针对视频的面部编码技术,针对音频流的语音分析,都可以用于检测人类的情绪反应,而这些也都是更先进的情感状态评估方法。而有关人类情感分析下一个前沿领域也有可能是:神经科学、可穿戴仪器开发和生理学的其他研究手段。
9)语言是人类使用的最有活力和发展最快速的工具之一。计算机技术在社会中普及给了我们前所未有的语言表现能力,众所周知的表情符号(emoji)就是这一进程中的典型例子。表情符号不仅仅是人类语言的扩音器,它在发展过程中逐渐获得了自己的语法和特殊语义,从而自然而然地如潮水般涌入广大的网络社交媒体中。对于情感分析研究者来说,我们也应该紧跟时代发展的脚步,去针对各种新诞生的语言表达形式进行相关的挖掘与研究。
10)通过将行为表现与情感分析模型进行联系,或是根据人口与文化范畴对语料进行分类,能够帮助你提升分析与预测的能力。当你面对庞杂的大规模数据时,请毫不犹豫地运用这个方法。
11)一些先进的概念,如动机、影响、维护和催化,都是建立在对人类情感和行为进行建模以及社群网络分析的基础上的。在数据咨询行业,研究的最主要目标是对市场以及消费者进行解析,而这种解析的最终目标则是创造使消费者“行动起来”的条件。作为情感分析研究者,你需要面向上述概念开展你的工作。
好了,上面便是我个人(笔者)对情感分析这些事的理解,当你在开始设计下一项有关的调查研究时,或是当你不知道如何将社交媒体挖掘应用到你的研究中时,不妨考虑一下使用情感分析。多思考一些实际可行的情感算法也许会对你有所帮助,将它结合于行为分析或是其他先进的市场细分技术,可能会使你找到洞悉潜在客户行为的方法。总而言之,情感分析值得重视,它是绝对能够为你的市场研究带来一些令人眼前一亮的新东西的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13