大数据背后,网络文学丰而不富
探讨70亿元产值规模背后的内容、受众与管理
截至2014年底,一共已有114部网络小说被购买影视版权,成为热门IP,网络文学迎来了大好时机,但目前连“什么是网络文学”都并未形成统一定义,这种繁荣背后的诸多问题也值得探讨。
网络文学越来越成为文化产业中的焦点。截至2014年底,一共有114部网络小说被购买影视版权,有90部计划被拍成电视剧,24部被拍成电影。据市场第三方统计,到2015年网络文学的产值规模能够达到70亿元。
这样一片大好的数据背后,是否意味着我国网络文学的发展已然成熟?
值得注意的是,对于“什么是网络文学”,就没有形成统一意见。比如诞生于弄堂网文学板块的金宇澄长篇小说《繁花》是否算作网络文学?华东师范大学中文系副教授黄平告诉早报记者:“会在定义上产生分歧,也说明了我国网络文学发展还不成熟。”
9月24日至25日,“首届中国网络文学论坛”在上海举行,对网络文学的内容、读者到管理状况展开了一一探讨。
内容:参差不齐并以类型化小说为主
在会上,“内容良莠不齐”成为与会者口中出现频率最高的字眼。阅文集团CEO吴文辉认为网络文学已进入了繁荣发展阶段,但他坦言也出现了作品数量多、精品少、抄袭模仿等屡禁不止的问题。
上海作协副主席、上海网络作协会长陈村表示,网络文学一开始被质疑、被视为“垃圾”,但在当下成为作者以数十万计、最活跃、最引人注目的文学形态。从1999年榕树下网站第一次颁奖算起,网络文学成为重要的文化现象仅仅花了十多年时间。
“网络文学向来不缺内容,但泥沙俱下,许多作品题材雷同、情节拖沓、文字累赘甚至涉及暴力色情,而堪称优质的作品和具有创作潜能的作者往往被湮没。”在陈村看来,这是制约网络文学产业越做越强的关键所在。同时,陈村表示当前网络文学以类型化小说为盛,较为单一,“但我们期待的更加个人化的风格尚未出现。”
黄平则向早报记者表示网络文学目前最大的问题在于“内容模式化、同质化严重”。同时,他认为网络作家有一种身份焦虑,他们急于在文学体系中找到合法性。
受众:缺少针对读者群体的研究
截至2015年6月,我国网络文学用户规模达到2.85个亿,占网民总体的42.6%,其中手机网络文学用户规模为2.49亿,占网民总数42%。在江苏作协党组成员汪政看来,网络文学与传统文学并不一样,尤其要加强对网络文学读者(用户)的研究:“他为何点击、为何欣赏、为何乐于做粉丝?”
黄平也表示:“今天网络文学研究的关键不在文学本身,而在于它面对的读者群 。”黄平告诉早报记者,从受众层面分析,和网络文学并列的应该是美剧或好莱坞电影。他分析,如今网络文学读者群呈现“高度青年化”特征,因为青年群体能在其中得到宣泄。“比如‘霸道总裁’系列,在传统文学中是找不到的。”黄平认为若要有所倡导,就要注意把倡导的核心价值观和青年一代的想法贯穿起来。
“现在我们对网络文学读者群体的研究比较少。”在黄平看来,以往纯文学中的“作家、作品研究”未必是研究网络文学的最好办法,但研究机构里针对读者的研究方法又尚未成熟。
管理:规范发展是根本目的
据新闻出版管理部门的科研机构统计,目前我国数字出版产业达到3387亿元的产值规模,以网络文学为代表的网络出版物也已成为数字出版发展的主力军。“在数据背后,网络文学到底是不是一个强大的产业?”国家新闻出版广电总局数字出版司网络出版监管处副处长程晓龙认为,目前我国网络文学“大而不强,丰而不富,多而不优,快而不稳”。
程晓龙比喻,不少网络文学企业还挣扎在生死线上,不少作家还徘徊在温饱线上,不少作品还游走在存亡线上。他说:“当我们审视网络文学发展的时候,还必须谈论规则的问题、管理的问题。”
会后程晓龙接受早报记者采访。对于网络文学管理,他认为首先要研究网络文学的发展规律,“网民写作大多出于对文学的热爱。在网络文学发展的十多年中,我们没有认真地审视过网络文学的发展是否合理、有序。”
“有的网络文学作品过于迎合读者口味,写一些感官刺激很强的文章。这跟商业模式有极大关系。因为网络文学很大程度上是边创作、边传播、边消费,为了不断地留住人气,个别作者就会想尽各种办法。”
“网络文学正在迎来它最好的发展时机,中央对包括网络文学在内的网络文艺非常重视。”程晓龙告诉早报记者,“对网络文学来说,只有建设和管理并举,网络文学才能健康、持续并繁荣发展。”
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22