公路数据价值大 分析挖掘助运营升级
智能交通建设带了了很多的便利,同时也产生了大量的数据,对于这些数据如何处理成为一大难题。针对公路数据,本身有着非常大的价值,但是数据挖掘工作并不简单,该从哪些方面着手,又将为公路运营带来什么好处?看看专家们是怎么想的。
近年来,"大数据"风靡一时,各行各业都在探讨"大数据"思维与技术在本行业的应用。高速公路是否可以应用"大数据"解决相关问题呢?
近期,由中国公路学会主办的第十六届中国高速公路信息化研讨会暨技术产品展示会在山东青岛召开,不少代表对大数据在交通运输行业的应用提出了自己的精彩见解。
公路海量数据潜在价值巨大
据了解,学界将大数据特点归纳为4个"V",即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。事实上,以前并非没有数据挖掘,而"大数据"理论则与传统的数据挖掘存在差异。
西安公路研究院姬建岗介绍说,传统数据挖掘采用的数学方法通常是找到一些自变量与因变量的关系,形成一个因变量与一系列自变量的因果关系,建立一个方程式,继而进行结果的计算。而"大数据"恰恰是对上述结果的逆向求解,即通过大量数据找到关联,再去寻找其中蕴含的关系式。大数据是"知其然而不必知其所以然",外行通过大数据分析可以打败内行。
长安大学教授许宏科则介绍说,当数据取得时,可能是杂乱无章、看不出规律,但运用作图、造表、各种形式的方程拟合、计算某些特征量等手段便可找出数据的规律性。
高速公路营运数据量大,大数据分析大有可为,这成为了专家们的共识。据了解,江苏省高速公路2013年联网收费流水数据就达6.94亿条。在姬建岗看来,高速公路的数据可以分为收费数据、交通监控数据、指挥调度数据、日常运营数据。
此外,还有相关的第三方数据,例如公安交警数据、路政数据、地方道路数据、车辆维修点及周边医院数据等。这些数据体量大、类型多,足以支撑起行业应用大数据来解决相关问题。
数据挖掘可甄别逃费车辆
山东省交通运输厅高速公路收费结算中心徐清峻介绍了如何应用数据挖掘实现收费稽查的目的。据了解,山东省专门建设了一套稽查平台。该平台根据设定的算法,定期对全省联网收费数据集中进行逐条甄别,对于符合逃费特征的车辆进行标识和汇总,继而自动提醒相关部门和各收费站。
"算法很关键。"徐清峻分析说,看似正常的一条条车道业务流水,哪些车辆具有逃费嫌疑呢?单条流水自然无法判定,需要结合多条车道,但山东省高速公路每个月产生约五千万条的收费数据,海量的收费流水数据让人晕头转向。
数据挖掘可甄别逃费车辆
为此,他们首先分析各种能够成功偷逃通行费的行为特征,继而构建能甄别这些数据的唯一算法,这样就能通过系统找出嫌疑车辆。当然最终确认仍需要通过现场验证。
与此类似,福建省高速公路监控中心主任王辉也介绍了数据挖掘在高速公路逃费稽查中的应用。据介绍,他们基于福建高速公路的网络特点及数据分布状况,研制了"高速公路逃费稽查电子辅助系统",该系统于2013年11月通过了福建省交通运输厅组织的科技成果评审,获得专家们的高度评价。
"大数据"离不开"云计算"
近年来,与"大数据"一道,"云计算"也成为流行的热门词汇。
据了解,"云计算"是将计算任务分布在大量计算机构成的资源池上,使各种应用系统能够根据需要获取计算力、存储空间和信息服务。在许宏科看来,"大数据"的应用需要"云计算"助力。
许宏科分析说,围绕大数据,一批新兴的数据挖掘、数据存储、数据处理与分析技术将不断涌现,因此处理海量数据更加容易、更加便宜和迅速。大数据的处理技术正在改变目前的计算机运行模式,大数据的存储和管理要求,使得云数据库的建立成为必要条件。
据介绍,2014年交通运输部开展的交通运输科技计划项目中的信息化技术研究计划,将基于云计算的交通运输数据交换与处理关键技术、综合交通运行监测与信息服务关键技术作为一个重要方向。
数据安全需行业标准
姬建岗同样也指出了高速公路应用大数据分析所面临的一些问题,例如,对数据的实时分析要求较高,包括用户消费查询、车预警信息发布,往往要求在数秒内得到分析结构,否则将影响用户体验和快速准确的信息发布;数据过于分散,营运数据的编码与存储过于分散,系统耦合度低,各自处理相关的数据,关联度太低;需要专业的数据分析系统及强有力的系统集成商,现有高速公路运营系统普遍感觉到实时分析能力差、海量数据处理效率低、缺少分析方法;上线大数据存储与分析系统需要资金投入。
此外,数据安全与隐私保护也必须纳入视野。姬建岗分析说,大量的营运数据被统一处理,怎样保护用户数据的隐私或商业利益,需要行业制定严格的交互标准。
数据分析咨询请扫描二维码
在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28