大数据时代到来 传统IT架构成掣肘
尽管周围对大数据的好处仍然描绘得多么天花乱坠,但不得不说,当前指导数据架构的理念体系其实已经过时了。如今大数据的情形已在近期发生了极大的改变。
在如今科技快速发展的时代,较之以往企业已经能够以更快的速度和更低的成本来获取和储存大量的数据。有人甚至认为,科技很快就能让大数据分析变得“像使用Excel一样容易”。在其他如潮水般涌起的革命性数据科学当中,最令人感到兴奋的莫过于能够实时掌握消费者和物联网的动态,但是,这恐怕容易使得企业陷于另一种困境。
日本信息通信技术(ICT)企业美国公司首席信息官尼尔·贾维斯(Neil Jarvis)表示:“企业已经知道他们能够越来越容易地获取和储存大量自身业务和世界范围内产生的数据。而所谓公司的麻烦是指,该如何正确利用这些数据——判断出哪些才是相关的、有用的,哪些是需要过滤掉的。最重要的是,哪些才是有助于推动业务发展的。”
因此,思想转变的第一步应是观察数据的方式。如今数据不再是一种静态的可支配资源,其意义不再像以往那样局限于一种单一的目的,而是或许已经成为延伸至多种功能用途的数据处理了。作为一种可再生资源,其价值的衡量不应是视其底线而定,而是应该将其视为一种不仅能带来价值增长,而且能够提供价值增长的机会的资产。数据作为商业的一种原材料也和其他生产的原材料一样,正是它能够被应用于各种各样的领域而使得其价值超越了作为原始产品本身。
以IBM近期对从美国本田汽车公司和太平洋电力公司收集而来的数据的应用为例,最初,太平洋煤气电力公司收集数据是为了管理其服务的稳定性,而本田收集电动汽车的数据是为了提高经营效率,但是,IBM则能够将两者建成数据集并整合成一个数据系统,通过这个系统,本田的车主能够从中掌握何时何地需要为汽车充电的节奏,能源供应商则能够对电力负荷进行相应的调整。
云计算公司Replicon联合创始人兼CEO Raj Narayanaswamy指出:
“今天,每一个行业和企业都面临着将数据转化为明确的成果的艰巨任务。数据的指数级增长意味着,每一个组织都极其有必要去建立合适的体系结构来使得数据的利用达到最大化。获得成功的关键是建立一个全面的数据产业价值链,包括数据发掘、集成和评估,而不是按照传统的做法部署以应用程序为中心的模式。”
对于一个企业来说,理解数据集成的重要性是创造新的价值的前提。假若对数据的理解仍然维持在单一和特定用途的层面,那么在数据开发过程中容易出现缺乏灵活性、信息不全面的情况,在利用数据开发未来机遇方面,组织或将会陷于被动的境地。而成功的例子的则要数亚马逊和Salesforce了,这两家公司借助策略性的数据管理方式而在短期内获得了规模式的增长。
数据应用的周期或许可以划分为七个步骤:发现、获取、加工、帅选、集成、分析和揭露。其中每一个步骤都至关重要,每一个有效用的策略也许都是建立在由上述七个步骤组成的数据体系之上的。云计算公司LiasonTechnologies的首席执行官Bob Renner对此作出了总结性分析:
“人们大部分的注意力(市场价值观)都放在了分析和结果量化的最后阶段——蕴藏着商务决策的阶段。这也确实是数据分析在历经万难之后最终的价值所在。但是,没有了前面的准备步骤,我们也不可能一步登天地就能在最后一步获得想要的结果。事实上,在开始使用分析算法来对数据进行解读之前,数据科学家都要花费大量的时间进行数据清理,以保证数据的质量。”
良好的数据科学离不开高质量的数据资料和管控数据质量的必要步骤,尤其是往往遭到忽视的数据集成。通常来说,有价值的大数据都是在这一个步骤里发现的。如果组织在一开始就以另一种心态(非如今固化的理念)来着手数据管理,他们就能够在控制成本和效用上掌握主动权。
大数据需要一个独特的基础,正如数据分析公司Green House Data的首席技术官科特妮·汤普森(Cortney Thompson)所言:“大数据可能意味着你需要大幅修正自家的IT基础设施,传统IT的配置并不能支持大数据。”据悉,有些公司会为了实现质的飞跃而新任命一名数字业务总监。而一个优秀的数字业务经理需要知道如何确保将那些非结构化的数据转化为可操作的信息材料。
那么,我们将如何可以从当前宣传大于实用的状况中获得突破呢?首先,如前文所述,充分理解大数据应用完整的操作周期,做到不忽视任何一个步骤的重要性,然后从传统的以应用为中心的传统思想中解放出来,建立灵活的、可持续利用的数据分析框架。“数据驱动的发现从根本上改变了我们工作和生活的方式,而那些掌握了大数据应用的人可以说是掌握了一项和同龄人竞争的优势。”(《大交易:市场回报最大化的简单策略》 彼得·范)
那些在大数据技术迸发时期就获得了巨大利益价值的组织,他们不仅关注那些外界一直在炒作的功能,而且对想要实现的营收、利润以及其他业务成果都投入了认真的思考
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21