大数据,如何不成为“概念股”
近日,两则关于大数据的新闻令人关注。其一,国务院印发《促进大数据发展行动纲要》,为我国大数据发展进行顶层设计和统筹部署;其二,我国正在制定《大数据产业“十三五”发展规划》,支持大数据技术和产业创新发展。
正如谷歌公司凭借对搜索数据的分析,成功预测2013年美国流感爆发,大数据这一全新数据科学发展至今,已被公认为全球各行业提升能级的要素之一。然而,在这股汹涌热潮中,新技术难免被误读、炒作,甚至可能陷入“从概念到概念”的封闭圈,而阻碍其良性发展。
大数据,如何避免成为“概念股”?
大数据也可能出错结果
“大数据是一座信息富矿,通过有效提取方式,相较小数据样本研究可以获得更多以往看不见的宝藏。”复旦大学大数据学院院长、教授范剑青坦言。大数据有多大?假设个人电脑的硬盘容量是1TB,2003年全世界数据大约可装满500万台电脑,现在能装满80亿台,到2020年,全世界数据预计能装满400亿台电脑。
如此巨大的“矿山”中,许多不可能正在发生。微软公司通过大数据分析处理,对奥斯卡金像奖作出“预言”,结果除“最佳导演”外,其余13项大奖全部命中。而今,大数据技术已进入金融、科研等领域。国内外均有企业通过分析社会人群对股票的关注热度,做出在证券市场的买卖决定,获得高额回报。范剑青说,当过去不曾被关注的信息在大数据推动下被妥善应用,就成为了独一无二的“盈利点”。
“但必须强调的是,它并不是万能的,也可能带来错误的结果。”范剑青说。
首先,是“假相关”问题。他举例,若在一个小村庄里,两个人面貌相似,那么判断其两者具有血缘关系的准确性就较高。但若在几千万人口的大城市,做出这一判断,其可信度就大大降低了。在大数据分析中,由于信息海量且多元异构,影响结果的要素繁多,若不能精准验证,往往会误解两个参数之间具有相关性,而影响整个结论。
另一个问题,是误差叠加。大数据涉及几万个、几百万个乃至数百亿个变量,这意味着如果每一个变量都造成一点点误差,最后的预测会是很多误差的叠加,失之毫厘,差之千里。
在他看来,理性看待这一新技术、新学科,是其发展的基础,通过技术创新,更科学地抽取样本、解读数据,更好地解决先天软肋,也是大数据技术向更高层次发展的驱动力之一。
急需更多数据科学家
以往谈到大数据发展,存在两大瓶颈。
其一,数据价值的体现,离不开共享,但由于相当一部分数据涉及普通人隐私,因此数据的使用尤其是商业使用,应有权益边界。在大数据更好地服务生活的同时,如何兼顾个人隐私安全,成为重要课题。其二,可公开信息尚存诸多屏障。多位信息技术研究者发现,他们最大的苦恼在于获取信息不易。大数据分析处理过程中,有相当一部分数据来源于政府部门可公开信息,然而,有时部分条块部门不愿提供,令研究者难为无米之炊。
不过,范剑青认为,当前最重要的难点,在于人才紧缺,缺乏人才支撑,新技术带来的新产业往往难以真正落地。
上海市数据科学重点实验室主任朱扬勇在近日发表的《大数据时代的数据科学家培养实践》一文中透露:国外有机构预测到2018年,仅美国本土就可能面临缺乏19万名具备深入分析数据能力人才的情况,同时具备通过分析大数据并为企业作出有效决策的数据管理人员和分析师也有150万人的缺口。大数据时代,最热门的职业是数据科学家。
与此同时,大数据技术所涉及的知识体系的复杂性,给人才培养带来新挑战。事实上,全球的大学开始探索培养数据科学研究人才,至今仅有5年。普林斯顿大学去年开始有统计与机器学习(大数据方向)的辅修课程,今年开始正式招生。清华大学去年成立数据科学研究院,推出大数据硕士项目。10月8日,复旦大学大数据学院、大数据研究院正式成立。由于大数据本身是统计学、计算机科学以及多种学科的交叉新兴学科,在这些高校中传统的按学科分类培养人才的模式“被迫”创新。
范剑青如今同时任美国普林斯顿大学统计委员会主任,他说,“如何设计课程,全世界都在摸索,我们也一样,初步考虑,统计学和计算机数据处理,将成为构成课程体系的核心。”课程体系将融汇经济管理、生命科学、医疗卫生、能源环境、社会统计和新闻传播等众多学科,打造跨学科的创新性人才培养平台。
大数据应用“创意为王”
在大数据处理的软硬件领域,国外已相继推出成熟产品。SAP公司的HANA系统、EMC 公司的reenplumUAP系统、微软公司的AzureHadoop系统等多个商用或半商用产品强势投入市场,争夺份额。在推出单一功能产品的同时,海外IT巨头还推出一体化服务,以数据处理技术为核心,将存储、数据库维护等打包出售。这些基础工具令大数据处理、分析更为便捷,门槛也更低。
但问题同时出现。复旦大学能源经济与战略研究中心常务副主任吴力波坦言,在当前大数据领域中,流传着一句话,说明专业发展中的“可怕陷阱”:“garbagein,garbageout(废料进废料出)。”简而言之,就是在大数据处理过程中,往往过度依赖基本工具,而忽视了所在专业领域的特殊性,随之而来的是,输入海量数据后,处理获得的数据也是无效的,为数据而数据,难以真正服务于社会实际。
作为投身能源大数据分析的专家,吴力波认为,在大数据产业发展和布局中,应始终强调其“创意为王”的天然属性,从数以亿万计的信息中提取关联要素,真正为生产、生活提供服务。用她的话来说,就是不再从数据到数据,而是从数据到故事。
举例来说,她研究的能源大数据,企业、甚至居民每分钟的用电数据是数据来源,面对如此高频海量的信息,首先要将其可视化处理,再清洗、修正、挖掘,找到真正相关联的要素,许多意想不到的结论就此产生。例如,分析用电情况发现,居民对阶梯电价敏感程度各异,其中收入、年龄、教育背景等属性的参差叠加,往往形成一个个特征群体,这些都可以成为今后能源政策制定、节能措施推广的有效参考。在国外电网的大数据应用中,更是将温度、湿度、风向、季节等非结构性因素纳入数据分析,对电网发电预测、价格制定、错峰安排等决策提供重要依据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19