rosebt:小数据很美丽-CDA数据分析师
市场营销技术将“大数据”鼓吹的天花乱坠,反而忽略了这样一个事实:更易操作的,更有价值的见解更有可能在小数据而不是大数据中被找到。有很多理由支持这一点,但主要的理由是大数据的“诅咒”。“大数据”意味着和小数据集有着不同性质的庞大数据集,需要特别的数据科学方法来区分信号和噪音,并提取出有意义的信息,这需要特别的计算系统和计算能力。
Vincent Granville这样定义大数据的诅咒。简单来说,你会在大数据集中发现更多“统计上显著”的关系。“统计上显著”是一个统计检验,检验观测值是否具有某个不仅仅是巧合的规律,这个规律可能有也可能没有意义。数据集越大,越多的“统计上显著”的关系将会无意义—这将大大提高人们把噪音误解为信号的可能性。“信号”意味着根据科学对数据有意义的解读,并可能转化成科学证据和知识。“噪音”意味着对数据无科学依据的解读,不会被认作是科学证据。但噪音可能被操纵成为某种形式的知识(事实上是无稽之谈)。
所以大数据在数据中会产生更多关联和规律—然而也产生比信号更多的噪音。统计第二类错误(存伪)的数量大大增加。换句话说,更多非因果关系的相互关系导致了对真相的幻觉。
“相互关系”意味着一系列广义的统计联系。“虚假的相互关系”意味着不是由于两变量间的直接关系,而是其他变量对其影响而产生的关系。“因果关系”意味着有科学证据支持的原因和结果之间的关系(比如一个事件(原因)和另一个事件(结果)的关系,第二个事件被认为是第一个事件的结果)。“相互关系并不能推断出因果关系”是科学界和统计学界的一个术语,来强调两变量之间有相互关系并不一定能推断出一个导致了另一个。
但人们天生就擅长看到规律。这对人类在丛林里生存是必要的素质,但却损害了我们很多形式的抽象思维—特别是误将数据中的随机性理解为有意义。换句话说,将噪音误解为信号。
大数据使我们难以在大堆数据中发现有操作性的、有价值的见解。它的危险是,我们将越来越多的错将数据中的随机性当作信号,从而做出错误的决策。
我有一个策略来解决“大数据的诅咒”这一问题—在很多情形下(但不是所有),有意的将大数据集分解为若干小数据集。将大数据集分解为小数据集应该有技巧的进行,而不是随意而为。分析和测试小数据集来区分信号和噪音并提取意义要比直接分析大数据容易得多。
时刻注意大数据的诅咒,避免错将噪音当成信号。小数据实际上也很美丽。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22