大数据时代带来的大变革
大数据时代的来临,带给我们众多的冲击,每个人都应当与时俱进、不断提升,放弃残缺的守旧思想,大胆接受新的挑战。
探讨大数据时代将给我们带来哪些变革,首先要搞清楚什么是大数据,其次,要厘清大数据会带来哪些变革,最后,要思考如何应对大数据时代的挑战。
什么是大数据?
国际数据公司定义了大数据的四大特征:海量的数据规模(vast)、快速的数据流转和动态的数据体系(velocity)、多样的数据类型(variety)和巨大的数据价值(value)。仅从海量的数据规模来看,全球IP流量达到1EB所需的时间,在2001年需要1年,在2013年仅需1天,到2016年则仅需半天。全球新产生的数据年增40%,全球信息总量每两年就可翻番。
而根据2012年互联网络数据中心发布的《数字宇宙2020》报告,2011年全球数据总量已达到1.87ZB(1ZB=10万亿亿字节),如果把这些数据刻成DVD,排起来的长度相当于从地球到月亮之间一个来回的距离,并且数据以每两年翻一番的速度飞快增长。预计到2020年,全球数据总量将达到35~40ZB,10年间将增长20倍以上。
需要强调的是:所谓大数据并不仅仅是指海量数据,而更多的是指这些数据都是非结构化的、残缺的、无法用传统的方法进行处理的数据。也正是因为应用了大数据技术,美国谷歌公司才能比政府的公共卫生部门早两周时间预告2009 年甲型H1N1流感的暴发。
厘清大数据带来了哪些变革
就像电力技术的应用不仅仅是发电、输电那么简单,而是引发了整个生产模式的变革一样,基于互联网技术而发展起来的“大数据”应用,将会对人们的生产过程和商品交换过程产生颠覆性影响,数据的挖掘和分析只是整个变革过程中的一个技术手段,而远非变革的全部。“大数据”的本质是基于互联网基础上的信息化应用,其真正的“魔力”在于信息化与工业化的融合,使工业制造的生产效率得到大规模提升。
简而言之,“大数据”并不能生产出新的物质产品,也不能创造出新的市场需求,但能够让生产力大幅提升。正如,《大数据时代:生活、工作与思维的大变革》作者肯尼思·库克耶和维克托·迈尔-舍恩伯格指出:数据的方式出现了3个变化:第一,人们处理的数据从样本数据变成全部数据;第二,由于是全样本数据,人们不得不接受数据的混杂性,而放弃对精确性的追求;第三,人类通过对大数据的处理,放弃对因果关系的渴求,转而关注相互联系。这一切代表着人类告别总是试图了解世界运转方式背后深层原因的态度,而走向仅仅需要弄清现象之间的联系以及利用这些信息来解决问题。
如何应对大数据带来的挑战
第一, 大数据将成为各类机构和组织,乃至国家层面重要的战略资源。
在未来一段时间内,大数据将成为提升机构和公司竞争力的有力武器。从某一层面来讲,企业与企业的竞争已经演变为数据的竞争,工业时代引以自豪的厂房与流水线,变成信息时代的服务器。阿里巴巴集团的服务器多达上万台,而谷歌的服务器超过了50万台。重视数据资源的搜集、挖掘、分享与利用,成为当务之急。
第二,大数据的公开与分享成为大势所趋,政府部门必须身先士卒。
2013年6月在英国北爱尔兰召开G8会议,签署了《开放数据宪章》,要求各国政府对数据分类,并且公开14类核心数据,包括:公司、犯罪与司法、地球观测、教育、能源与环境、财政与合同、地理空间、全球发展、治理问责与民主、保健、科学与研究、统计、社会流动性与福利和交通运输与基础设施。同年7月,我国国务院就要求推进9个重点领域信息公开工作。正如李克强总理所强调的,社会信用体系建设包括政务诚信、商务诚信、社会诚信的建设,而政务诚信是“三大诚信”体系建设的核心,政府言而有信,才能为企业经营作出良好示范。作为市场监督和管理者,政府应首当其冲推进政务公开,建设诚信政府。为此,国务院通过《社会信用体系建设规划纲要(2014~2020年)》,要求依法公开在行政管理中掌握的信用信息,提高决策透明度,以政务诚信示范引领全社会诚信建设。
第三,机构组织的变革与全球治理成为必然的选择。
在工业时代,以高度的专业分工形成的韦伯式官僚制组织形态,确实具有较高的效率。然而,这种专业化分工一旦走向极致,就容易出现分工过细、庞大臃肿、条块分割等弊端,无法有效应对新的挑战。大数据技术提供了一种解困之道:在管理的流程中,管理对象和事务产生的数据流只遵循数据本身性质和管理的要求,而不考虑专业分工上的区隔,顺应了全球治理的需要。
1990年,时任国际发展委员会主席勃兰特,首次提出“全球治理”的概念。所谓全球治理,指的是通过具有约束力的国际规制(regimes)和有效的国际合作,解决全球性的政治、经济、生态和安全问题,以维持正常的国际政治经济秩序。为了顺应全球治理的浪潮,我国应当构建自己的全球治理理论。深化对全球化和全球治理的研究,为世界贡献中国对全球治理的先进理念。
当然,构建我国最新的全球治理理论,当务之急是构建我们的国家治理理论,夯实基础。《中共中央关于全面深化改革若干重大问题的决定》指出,“全面深化改革的总目标是完善和发展中国特色社会主义制度,推进国家治理体系和治理能力现代化”。这充分体现了与时俱进的治理理念,切中了我们国家运行中的核心问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31