有些大数据神话,请不要盲目崇拜
大数据是什么?大数据可以做什么?大数据要如何做?每个人心里都有一杆秤,即使相对很有经验的CIO也会有不同的看法。让十位首席信息官去定义大数据,你会得到十个不同的答案。gartner分析师markbeyer说,这是因为大数据对企业的it专业人员来说仍然并不规范。
同时,beyer提出了八个大数据神话,这些神话
1.大数据起始于100tb。不要再去寻觅大数据标准尺寸了,因其并没有标准尺寸。“大数据是对数据的处理,而不是数据的大小,”beyer说。
2.想要大数据就必须更换基础设施。“如果我因为有新的需求就决定改变整个基础架构,那我是把之前所有的东西都当做了赌注,”beyer说。他的经验教训是什么?“你要搞清楚,(基础设施)成熟度牺牲的风险是否值得。”
3.百分之八十的数据是非结构化的。这可能是最经常被引用的大数据统计了,但根据beyer所说,其并不准确。“世界上最大的信息资产是机器数据。因为其并未相互关联就说它们非结构化绝对是个谎言。机器数据是结构化的数据。”顺便说一句,这些大量的机器数据,往往是重复的信息,确认了一切的正常。“这就是机器数据通常所表达的,”他说。
4.工具将取代数据科学家。放心,所有花在吸引,拉拢,获取数据科学家上的钱都不会白花,beyer说。“工具是一种工程,工程是对已经发现的事实的重复利用。而科学是去发现新的事实。”工具不会取代数据科学家-至少在工具可以自行复制和发展之前不会。
5.更多的数据就可以解决数据质量的问题。“数据质量越低,答案质量就越低,”beyer说。首席信息官们应该关注数据质量。以通过手机收集的气质地理定位数据为例,有些人把手机等同于真实的个人,他说。然而,手机可以被不小心留在办公室,或者gps功能可以在任何时间点被关闭。“手机不是人,”beyer说。
6.实时只是速度更快而已。实时操作,并不意味着加快了当前数据的摄入清理和分析过程,beyer说。而是“确保数据收集和决策之间的间隔越短越好,”他说。此外,大多数企业数据是不需要实时操作的。不过,实时操作也的确带来很多益处。在政府工作闭塞化的今天,苏州政府使用大数据魔镜将政府工作情况实时可视化展示给公民,不得不说是公共管理领域的一个好例子。
7.数据量优于专业知识。那些认为可以简单地不再管业务流程的人,请再想一想。这是因为,“一位好的数据科学家必须在某一时刻被叫停”,beyer说。如果没有业务流程,数据科学家将不断不断不断的进行下去而不能提供商业价值。需要有人帮忙划清界线。
8.数据模型没有用。这一论断很绝对。不过,beyer澄清说,任何数字资产里的东西都有其数字模型。“我们不会因为大数据就舍弃模型,”他说。
数据神话的观点在很多人心里已经根深蒂固,要把大数据发展壮大,消除对于这些数据神话的盲目崇拜是非常必要的。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21