大数据火了,运营商如何避免坐拥金山卖苦力
大数据的作用,看似云里雾里,其实可抓可拿。
根据IDC的研究,全球64%的企业已成为数字化转型的探索者和实践者,“全方位的客户体验、灵活高效的业务流程、智慧化的产品与服务、创新的商业模式”已成为新的数字化转型战略的核心,而这一切的基础就是大数据。
李克强在贺电里说:“数据是基础性资源,也是重要的生产力。”马凯则说:“谁拥有了大数据,谁就拥有了未来。”工信部副部长怀进鹏也认为:“人类社会正逐渐走向数据经济时代。”
而开幕式上特别推出的《大数据贵阳宣言》认为,建立全球性的大数据交易市场是经济发展的必然要求,应尝试建立有所有权、使用权、阶段时间和限定领域的数据交易等新模式、新规则,把数据交易发展为金融产品。《宣言》特别强调“政府数据开放是全球共同的目标和行动”。这些言论不是简单对大数据理念的认同,而是深刻把大数据理念与社会实践相结合的时代产物。
在工业4.0的大环境下,工业企业的信息化水平越来越高,信息数据量越来越多,各种设备仪器产生的海量数据对信息处理的要求也在提高。现在,新兴的大数据、云计算这类ICT技术刚好可以解决数据海量性问题。本来ICT业对“互联网+”、工业4.0的大蛋糕正愁无处下口,而大数据无疑是一个极好的抓手和切入点,可以让ICT一下子切入到工业领域的各个环节,同时ICT自身也可以实现完美转型。
难怪今年大数据火了,甚至马云放言:今天不参与大数据建设,十年后会像今天一样抱怨与埋怨。
其实,作为信息化建设的主力军,运营商在大数据领域早有布局。早在2012年,三大运营商就投资150亿元在贵州建设了数据中心基地。不仅如此,2012年,在内蒙古呼和浩特,三大运营商共投资近400亿元兴建了规模比贵阳还大的大数据中心。此外,在郑州、重庆、杭州、苏州等地,运营商都建设了大数据中心,运营商发力大数据不可谓不早。但是,运营商建设的大数据中心,其巨额投资却大都没有产生相应的效益。
“明明自己坐拥一座金矿,却都被BAT挖走了!”原信息产业部部长吴基传在不久前召开的第十二届中国信息港信息论坛上疾呼:“三家电信运营商要转变思路,应从单纯追求数量增长转向创新和挖掘信息数据价值。”
贵阳大数据交易所执行副总裁胡媛媛在接受记者采访时也表示,大数据本身是没有价值的,它必须通过清洗、建模、分析、交易才能产生价值,使之成为一座巨大的金矿,让更多的人去挖掘数据,交易数据,从而产生巨大价值,可以预见,未来大数据会作为一种资产存在并将诞生一个万亿级别的交易市场。
在这一轮大数据热中,我们看到又是互联网企业抢了风头,互联网大佬不仅高调亮相,实质性动作也是接二连三。百度、腾讯、阿里等拥有数据的平台型企业,纷纷针对自身的平台用户提供数据分析业务,并且向金融、环保、交通、医疗等行业的数据分析应用逐渐渗透。
目前,在不少地方,运营商还停留在搭建数据中心基地、邀请互联网企业租用入驻挣租金这种低层次的商务模式上。非但如此,在某些地区,还发生了三家运营商为了吸引一些互联网企业入驻,而竞相压低租金的现象,本来就只能挣个廉价的管道租金和物业费,却连这个“苦力活”还在搞恶性竞争,真是让人扼腕!
更令人担忧的是,如今不少地方虽然建起了大数据产业园,但是对于海量数据自己无法处理,只能将其卖给一些国外公司进行大数据挖掘,这不仅带来了严重的安全隐患,而且也将产业链上利润最为丰厚的一块拱手让出。
从不久前公布的第一季度财报看,三大运营商利润全部是负增长,收入增长也显现出疲态,战略转型迫在眉睫。而不管是“流量经营”还是“去电信化”,都面临移动互联网带来的大数据挑战,运营商要避免大数据领域的“哑管道”危机,必须向数据挖掘、分析、应用的价值高端迈进,别再像互联网刚刚起步时那样起个大早,赶个晚集。
业内人士表示,手里掌握着所有用户通话、数据流量消费数据的三大运营商,如果能在大数据时代多往前跨出一步,组建专业化团队,吸纳高层次人才,用更加开放和互联网化的方式来运作,释放自身管道中庞大数据的潜在力量,在数据清洗、建模、分析甚至交易等方面多做做文章,将会打开一个潜力无限的市场。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20