Apache Hadoop为BI分析带来机遇和挑战
Apache Hadoop技术经常与大数据概念联系在一起,它们常常同时出现在各种行业会议和媒体报道中。而IT人员、咨询顾问和行业分析师已经逐渐达成共识,Hadoop只是诸多大数据技术中的一种。
Hadoop是一个开源技术 ,它允许公司存储和分析分布式计算环境的海量数据。它的出现肯定对提升大数据的影响力有重要作用。但是行业观察者指出,Hadoop现在仍存在一些问题。
Forrester机构的企业架构分析师Brian Hopkins说:人们开始认识到,大数据和Hadoop并不是同义词。这是因为他们下载Hadoop之后,并不意味着就能够玩儿转大数据,它仅仅只是一个工具。
大数据与Hadoop:从幕后走到台前
Hadoop最初由互联网巨头谷歌和雅虎共同开发,现在已经转移到Apache软件基金会。在赢得了大数据必备工具的称号并开始出现一些成功案例之后,这项技术及其醒目的logo从2011年起名声大振。
以eBay为例,这家知名电商平台在几次大会上都介绍了它的三层数据分析平台。结构化数据位于第一层:一个用于保存内部业务项目(如支撑商业智能仪表板和报表)的企业数据仓库。第二层由Teradata数据管理平台组成,用于存储大容量半结构化信息。而非结构化数据(如文本信息)则保存在第三层,它是一个用于深度研究、分析和实验的Hadoop集群。
Hopkins在最新播客大数据的超大规模价值上指出:现在出现了一个有趣的用例,其中Hadoop被看作是一种快速分布式环境,它成为分段存储大量信息的场所。因为你还无法确定如何处理它,所以直接将原始文件保存在Hadoop中,然后由Hadoop处理这些文件。
Hadoop是一个分布式文件系统,它的数据(结构化、半结构化和非结构化)存储功能优于关系型数据库。因此,它非常适合那些需要收集大量数据(如无统一格式的社交媒体网站内容、计算机生成的传感器日志和GPS位置信息)的公司使用,而不会影响他们的传统关系数据库。
Wayne Eckerson是TechTarget业务应用研究主管,他在最新报告大数据及其对数据仓库的影响中指出:Hadoop是一种载入立即可执行的环境:管理员可以在Hadoop中存储大量数据,而不需要将它们转换为特定的结构。然后,用户就可以使用他们的工具分析这些数据。
SAS 研究所的资深行业分析师Jill Dyché也指出,Hadoop使用户能够查看原始数据,这在一定程度上改变了数据仓库使用者的工作方式。
她说:在数据仓库领域,我们鼓励提出业务需求,鼓励严格的数据质量要求,但是不鼓励独立加载数据。但是在大数据领域,这一方式得到了颠覆。
Apache Hadoop困境
Hadoop还有其他优点。例如, MapReduce能够以并行方式处理大数据集。根据行业分析师Philip Russom的观点,它是一个通用执行引擎,甚至能够处理手工编码的代码。
但是,如果要使用MapReduce,程序员必须能够操作它的语言。有一些工具并未被广泛熟悉,如Hive,它使用一种类SQL的语言(HQL)访问数据。
Russom指出:我曾经听人说:‘Hive很容易学。’但是,它无法真正解决与传统SQL工具的兼容问题。
关心数据分析的公司还需要一些技术人员参与(如数据科学家),他们应该有能力操作Hadoop的专用工具。数据科学家一般具备博士学位,因此,他们的薪水可能很高,而且也很难招聘到。
此外,这项技术还有其他一些缺点:Eckerson甚至将Apache Hadoop描述为乳臭未干,而且在安全性、数据质量和元数据分类等功能上存在不足。Hopkins认为它很难用,不成熟。Russom认为这项技术肯定会有不错的前景,但是成为主流应用还需要几年时间。
根据eBay高级技术成员和架构师Tom Fastner的观点,即使在eBay,其核心竞争力也不在于Hadoop,而是构成数据分析平台的第二层技术。eBay将它基于Teradata的数据库系统称为Singularity,并且表示它将提供30 PB空间,而并发性低于EDW。Fastner指出,Singularity的最大应用是用户行为分析,这个流程通常可以产生宝贵的商业洞察力。
而且,Forrester的Hopkins指出,有其他技术可以帮助企业实现优于Hadoop的大数据方案。所有这些都取决于业务需求。他说:我们分析了大数据技术的两个不同方面。其一是结构,另一个是延迟。
每一个方面由低到高排列,大数据工具和技术都属于这些范畴。例如,内存技术(如SAP HANA)可以在高度结构化数据上实现低延迟的查询结果,而大规模并行处理(MPP)技术(包括Teradata和IBM Netezza)都可以处理高延迟的高度结构化数据。
Hopkins说,虽然Hadoop能处理多种数据类型,但由于批处理的方式,这使得它无法搭建实时环境。
专家指出,Hadoop的光环可能会慢慢消退,但现在它仍然是倍受关注的技术,它的主要支持者仍然是互联网巨头。(文章来自:CDA数据分析师培训官网)
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20