Apache Hadoop为BI分析带来机遇和挑战
Apache Hadoop技术经常与大数据概念联系在一起,它们常常同时出现在各种行业会议和媒体报道中。而IT人员、咨询顾问和行业分析师已经逐渐达成共识,Hadoop只是诸多大数据技术中的一种。
Hadoop是一个开源技术 ,它允许公司存储和分析分布式计算环境的海量数据。它的出现肯定对提升大数据的影响力有重要作用。但是行业观察者指出,Hadoop现在仍存在一些问题。
Forrester机构的企业架构分析师Brian Hopkins说:人们开始认识到,大数据和Hadoop并不是同义词。这是因为他们下载Hadoop之后,并不意味着就能够玩儿转大数据,它仅仅只是一个工具。
大数据与Hadoop:从幕后走到台前
Hadoop最初由互联网巨头谷歌和雅虎共同开发,现在已经转移到Apache软件基金会。在赢得了大数据必备工具的称号并开始出现一些成功案例之后,这项技术及其醒目的logo从2011年起名声大振。
以eBay为例,这家知名电商平台在几次大会上都介绍了它的三层数据分析平台。结构化数据位于第一层:一个用于保存内部业务项目(如支撑商业智能仪表板和报表)的企业数据仓库。第二层由Teradata数据管理平台组成,用于存储大容量半结构化信息。而非结构化数据(如文本信息)则保存在第三层,它是一个用于深度研究、分析和实验的Hadoop集群。
Hopkins在最新播客大数据的超大规模价值上指出:现在出现了一个有趣的用例,其中Hadoop被看作是一种快速分布式环境,它成为分段存储大量信息的场所。因为你还无法确定如何处理它,所以直接将原始文件保存在Hadoop中,然后由Hadoop处理这些文件。
Hadoop是一个分布式文件系统,它的数据(结构化、半结构化和非结构化)存储功能优于关系型数据库。因此,它非常适合那些需要收集大量数据(如无统一格式的社交媒体网站内容、计算机生成的传感器日志和GPS位置信息)的公司使用,而不会影响他们的传统关系数据库。
Wayne Eckerson是TechTarget业务应用研究主管,他在最新报告大数据及其对数据仓库的影响中指出:Hadoop是一种载入立即可执行的环境:管理员可以在Hadoop中存储大量数据,而不需要将它们转换为特定的结构。然后,用户就可以使用他们的工具分析这些数据。
SAS 研究所的资深行业分析师Jill Dyché也指出,Hadoop使用户能够查看原始数据,这在一定程度上改变了数据仓库使用者的工作方式。
她说:在数据仓库领域,我们鼓励提出业务需求,鼓励严格的数据质量要求,但是不鼓励独立加载数据。但是在大数据领域,这一方式得到了颠覆。
Apache Hadoop困境
Hadoop还有其他优点。例如, MapReduce能够以并行方式处理大数据集。根据行业分析师Philip Russom的观点,它是一个通用执行引擎,甚至能够处理手工编码的代码。
但是,如果要使用MapReduce,程序员必须能够操作它的语言。有一些工具并未被广泛熟悉,如Hive,它使用一种类SQL的语言(HQL)访问数据。
Russom指出:我曾经听人说:‘Hive很容易学。’但是,它无法真正解决与传统SQL工具的兼容问题。
关心数据分析的公司还需要一些技术人员参与(如数据科学家),他们应该有能力操作Hadoop的专用工具。数据科学家一般具备博士学位,因此,他们的薪水可能很高,而且也很难招聘到。
此外,这项技术还有其他一些缺点:Eckerson甚至将Apache Hadoop描述为乳臭未干,而且在安全性、数据质量和元数据分类等功能上存在不足。Hopkins认为它很难用,不成熟。Russom认为这项技术肯定会有不错的前景,但是成为主流应用还需要几年时间。
根据eBay高级技术成员和架构师Tom Fastner的观点,即使在eBay,其核心竞争力也不在于Hadoop,而是构成数据分析平台的第二层技术。eBay将它基于Teradata的数据库系统称为Singularity,并且表示它将提供30 PB空间,而并发性低于EDW。Fastner指出,Singularity的最大应用是用户行为分析,这个流程通常可以产生宝贵的商业洞察力。
而且,Forrester的Hopkins指出,有其他技术可以帮助企业实现优于Hadoop的大数据方案。所有这些都取决于业务需求。他说:我们分析了大数据技术的两个不同方面。其一是结构,另一个是延迟。
每一个方面由低到高排列,大数据工具和技术都属于这些范畴。例如,内存技术(如SAP HANA)可以在高度结构化数据上实现低延迟的查询结果,而大规模并行处理(MPP)技术(包括Teradata和IBM Netezza)都可以处理高延迟的高度结构化数据。
Hopkins说,虽然Hadoop能处理多种数据类型,但由于批处理的方式,这使得它无法搭建实时环境。
专家指出,Hadoop的光环可能会慢慢消退,但现在它仍然是倍受关注的技术,它的主要支持者仍然是互联网巨头。(文章来自:CDA数据分析师培训官网)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26