Apache Hadoop为BI分析带来机遇和挑战
Apache Hadoop技术经常与大数据概念联系在一起,它们常常同时出现在各种行业会议和媒体报道中。而IT人员、咨询顾问和行业分析师已经逐渐达成共识,Hadoop只是诸多大数据技术中的一种。
Hadoop是一个开源技术 ,它允许公司存储和分析分布式计算环境的海量数据。它的出现肯定对提升大数据的影响力有重要作用。但是行业观察者指出,Hadoop现在仍存在一些问题。
Forrester机构的企业架构分析师Brian Hopkins说:人们开始认识到,大数据和Hadoop并不是同义词。这是因为他们下载Hadoop之后,并不意味着就能够玩儿转大数据,它仅仅只是一个工具。
大数据与Hadoop:从幕后走到台前
Hadoop最初由互联网巨头谷歌和雅虎共同开发,现在已经转移到Apache软件基金会。在赢得了大数据必备工具的称号并开始出现一些成功案例之后,这项技术及其醒目的logo从2011年起名声大振。
以eBay为例,这家知名电商平台在几次大会上都介绍了它的三层数据分析平台。结构化数据位于第一层:一个用于保存内部业务项目(如支撑商业智能仪表板和报表)的企业数据仓库。第二层由Teradata数据管理平台组成,用于存储大容量半结构化信息。而非结构化数据(如文本信息)则保存在第三层,它是一个用于深度研究、分析和实验的Hadoop集群。
Hopkins在最新播客大数据的超大规模价值上指出:现在出现了一个有趣的用例,其中Hadoop被看作是一种快速分布式环境,它成为分段存储大量信息的场所。因为你还无法确定如何处理它,所以直接将原始文件保存在Hadoop中,然后由Hadoop处理这些文件。
Hadoop是一个分布式文件系统,它的数据(结构化、半结构化和非结构化)存储功能优于关系型数据库。因此,它非常适合那些需要收集大量数据(如无统一格式的社交媒体网站内容、计算机生成的传感器日志和GPS位置信息)的公司使用,而不会影响他们的传统关系数据库。
Wayne Eckerson是TechTarget业务应用研究主管,他在最新报告大数据及其对数据仓库的影响中指出:Hadoop是一种载入立即可执行的环境:管理员可以在Hadoop中存储大量数据,而不需要将它们转换为特定的结构。然后,用户就可以使用他们的工具分析这些数据。
SAS 研究所的资深行业分析师Jill Dyché也指出,Hadoop使用户能够查看原始数据,这在一定程度上改变了数据仓库使用者的工作方式。
她说:在数据仓库领域,我们鼓励提出业务需求,鼓励严格的数据质量要求,但是不鼓励独立加载数据。但是在大数据领域,这一方式得到了颠覆。
Apache Hadoop困境
Hadoop还有其他优点。例如, MapReduce能够以并行方式处理大数据集。根据行业分析师Philip Russom的观点,它是一个通用执行引擎,甚至能够处理手工编码的代码。
但是,如果要使用MapReduce,程序员必须能够操作它的语言。有一些工具并未被广泛熟悉,如Hive,它使用一种类SQL的语言(HQL)访问数据。
Russom指出:我曾经听人说:‘Hive很容易学。’但是,它无法真正解决与传统SQL工具的兼容问题。
关心数据分析的公司还需要一些技术人员参与(如数据科学家),他们应该有能力操作Hadoop的专用工具。数据科学家一般具备博士学位,因此,他们的薪水可能很高,而且也很难招聘到。
此外,这项技术还有其他一些缺点:Eckerson甚至将Apache Hadoop描述为乳臭未干,而且在安全性、数据质量和元数据分类等功能上存在不足。Hopkins认为它很难用,不成熟。Russom认为这项技术肯定会有不错的前景,但是成为主流应用还需要几年时间。
根据eBay高级技术成员和架构师Tom Fastner的观点,即使在eBay,其核心竞争力也不在于Hadoop,而是构成数据分析平台的第二层技术。eBay将它基于Teradata的数据库系统称为Singularity,并且表示它将提供30 PB空间,而并发性低于EDW。Fastner指出,Singularity的最大应用是用户行为分析,这个流程通常可以产生宝贵的商业洞察力。
而且,Forrester的Hopkins指出,有其他技术可以帮助企业实现优于Hadoop的大数据方案。所有这些都取决于业务需求。他说:我们分析了大数据技术的两个不同方面。其一是结构,另一个是延迟。
每一个方面由低到高排列,大数据工具和技术都属于这些范畴。例如,内存技术(如SAP HANA)可以在高度结构化数据上实现低延迟的查询结果,而大规模并行处理(MPP)技术(包括Teradata和IBM Netezza)都可以处理高延迟的高度结构化数据。
Hopkins说,虽然Hadoop能处理多种数据类型,但由于批处理的方式,这使得它无法搭建实时环境。
专家指出,Hadoop的光环可能会慢慢消退,但现在它仍然是倍受关注的技术,它的主要支持者仍然是互联网巨头。(文章来自:CDA数据分析师培训官网)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31