如何驾驭大数据
到 2018年 全球大数据方面的开支将达 1140 亿美元,是 5年 前的 3 倍;到 2020年 全球大数据规模将达 44ZB(泽字节),是 2013年 的 10 倍。下一波大数据浪潮即将来袭,但是并没有多少组织为此做好准备。如果应对措施不当,你可能就不是弄潮的那个,而是被浪尖打翻的那个。如何为驾驭大数据做好准备呢?请看 Crewspark CEO Cameron Sim 的文章。
1140 亿美元。这是 2018年 全球组织在大数据方面的开销,仅仅 5年 的时间就增长了 300%以上。但是这些投入有多少是值得的呢?
过去 10年,我们目睹了大数据管理新方法的广泛应用,如 MapReduce、供大规模存储使用的非模式化数据库,以及用于存储和处理的 Hadoop、Storm 和 Spark 等。但是大数据的使用不仅仅是特定平台或范例的部署而已: 通常这意味着公司对数据的建构和组织进行彻底的重新设计。
但据调查发现,目前还没有多少组织为新的数据平台和能力做好基本准备。只有 35%的组织拥有了 “健壮的数据捕捉、管理、验证及保存流程”,更有 67%“缺乏衡量定义明确的大数据行动成功的标准。” 那些大数据解决方案基本都是被动集成进来的。
但时间可不等人,根据 2014年IDC 的报告,到 2020年,全球的数据总量将达 44ZB,整整是 2013年 的 10 倍。面对着下一波的数据大爆发,那些未做好准备的公司将可能就会有背负运营和技术双重债务的风险,并因数据落后而被淘汰出局。
具体而言,这些风险体现在以下几个方面:
企业丧失透明度
业界将面临大规模的技能短缺问题——很少有 IT 专业人士有经验管理大规模的大数据平台。根据麦肯锡的分析,到 2018年,美国将出现 150 万名有能力做出基于数据决策的经理。为了缩短这一鸿沟,麦肯锡估计企业将需要把数据和分析预算的 50%投入到一线经理的培训上面。但是还没有多少公司意识到这一点。
随着数据需求的扩大,如果对信息管理缺乏深刻理解,对数据扩展性缺乏最佳实践,那么在管理数据驱动的系统时就会遭遇到重大挑战。而糟糕的运营透明度会导致企业很难识别出数据何时不准确和无意义,甚至连关键报表和指标是否正确运行都不知道。理清这些错综复杂并对数据提出正确的问题将成为 IT 人员的必备技能。否则就会缺乏对企业运营的可视性,无法有效做出知情决策并削弱企业的竞争优势。
人工成本飙升
据估计 2014年 时数据科学家 50-80%的工作时间花在了数据集清理和处理上。近期公司往往倾向把数据准备工作的自动化外包给离岸或近岸的数据专家。对 CloudFactory、MobileWorks 及 Samasource 这类微工作平台的需求已经爆发,据估计,到 2018年 这类业务的规模将达到 50 亿美元。
但是外包无法规模满足需求。鉴于未来的数据量将达到 44ZB,数据的这种快速增长会需要成千上万具备长期可行的解决方案的离岸或近岸外包团队。而任何可持续的解决方案都离不开显著的自动化。
通信障碍
现在企业间的交互依靠的是经过组织的数据,但与未来 20年 发生的事情相比,这种组织数据的过程将会显得苍白无力。未来将会出现新的企业数据网络标准以及相应的算法和元数据。未能参与到这一全球数据市场的公司将无法利用市面上销售的这些数据产品。
全球各个领域都在发生这种朝着大规模商业数据共享的演变。比方说,在要求第三方验证其研究的压力之下,像葛兰素史克这样的药企最近都拟定了更广泛共享实验数据的计划。奥巴马总统已经要求技术公司共享潜在黑客威胁的数据。Forrester 最近的一项研究预测,数据服务将成为 2015年 的主流产品。按照这种节奏,10年 后大数据的有效使用不仅会成为市场致胜的关键,而且还是参与市场的先决条件。
这些风险就像一个个大数据的定时炸弹,对你构成严峻挑战。不过如果你采取下面的三个步骤,危险也许就可以解除。
1、不要走一步看一步
为了确保未来的分析能力,企业必须现在就开始投资一个能够快速有效管理新数据集的平台。应该考虑业务未来在数据摄入与联合方面如何运作,如何从传统的系统过渡到端到端的自动化的数据与分析。
其核心是这个平台要能够有目的地、小心地、透明地扩充,而不是光收集数据,但对这些数据使用却没有明确的目的,或者在数据的解析上不做投入。
2、再痛也要重建旧数据应用架构
许多公司过度依赖维护开销很高的旧系统,导致升级或作出战略变革的优先性被贬低。甚至一些大公司也是如此,比方说三星的 SmartHub TV 是跑在云上面的,但是因为顾忌迁移成本,其所有的金融交易仍在本地处理。
其结果就是在许多组织里面数据形成了一个个以部门为单位的烟囱。某些数据,比方说社交媒体方面的信息,甚至还保存在公司以外,这又增加了一层复杂性。要想大数据创新,企业必须以提高跨部门运营透明度为焦点对旧的数据应用进行翻新。
3、模块化、多颗粒度的数据管理
要把裸数据和洞察数据塑造成模块化、组织得当、具备各种颗粒度的实体,这一步做得越深入,越能够有效的利用商业洞察,同时还能在永远变化的大数据形势中保持敏捷的反应力。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16