大数据 银行风险管理的“金钥匙”
数据越丰富则分析结果会越强大,大数据分析及相关分析数据迎来了黄金期。
随着数据量的增大以及数据多样性的增强,如何驾驭好这些数据让它更好的为决策服务、减少损失以及增加收益变得越来越重要。银行的业务经营依托于对风险的评估,以及对评估结果加以利用。这对当下的银行管理者提出更高的要求,包括分析获取可信的数据以及与公司员工分享得到的结果。
风险一直在增长
正如最近一些头条所指出的,风险的复杂性在增加,这种复杂性遍布于银行业的各个角落。银行业的集中度越来越高,更多的大型机构要协调不同层级和维度的关系,包括产品、流程、技术、组织架构以及合同等。金融创新带来了新的工具,不同市场之间的关联性增强也带来更频繁的跨界信息流动。由此带来的问题是,当风险出现的时候,市场的波动率会瞬时增加,从而造成会带来巨大流动性风险的“波动聚类(Volatility Clustering)”,就像2007—2009年的金融危机以及2001年的互联网泡沫破裂那样。
显然,银行业的风险非常广泛。“我们已经定义了13种系统性风险:网络风险、高频交易风险、对手风险、担保风险、流动性风险等等,同时我们也从如此多的大型银行的清算和结算活动中总结出一整类的关联性风险定义”。Mike Leibrock说,Mike是美国存款信托清算公司(DTCC)负责系统风险的副总裁(DTCC为所有的大型银行提供清结算服务)。
作为监管者,当然也包括他们监管的机构,还是像之前一样关注与识别和管理金融系统中的潜在风险,同时数据的管理实践也在不断变化。
大数据的潜力
银行在处理储存在他们数据库的数据方面都是专家。他们能够从把每天发生的数据整理成报告提供给中台和前台人员,供他们研究最新的市场趋势。
大数据是不同的。它数量巨大、形式多样并具有瞬时性,它可以从移动设备、社交应用、网页访问以及第三方获取,包括信用消费等方面的数据。它可以帮人们揭示那些连专家都不易察觉到的潜在消费习惯。大数据能够帮助银行从更细致的层面上发掘潜在的风险,可以细致到单一客户、产品以及投资组合水平,有些甚至可以更细致,达到信用审批以及定价层面。
为了了解更多关于大数据和银行风险管理的关系,EIU调查了6大洲55个国家的208位风险及合规管理上的高管,涵盖了零售银行(29%)、商业银行(43%)、投资银行(28%)。结果显示越来越多的银行界开始倾向于使用大数据,但他们仍然面临着一些挑战,主要是将分析结果应用在更高级的风险管理中,尤其是流动性风险和信用风险。
调查要求高管们为他们自己的机构打分,主要在控制以及缓解风险方面。结果显示了如下的一些相同点,包括:
基本的大数据工具来进行整理和获取那些有序及无序的数据(有35%高于平均分及7%低于平均分的高管选择了此项);更高级的大数据工具来进行预测和视觉化分析(有33%高于平均分及8%低于平均分的高管选择了此项)。
换句话说,那些表现更好的银行更喜欢使用多种不同的方法来进行风险分析,包括基础的和高级的分析工具。更进一步说,他们也更喜欢靠大量的数据解决风控问题。
支持风险管理的大数据投资
除了来自四个区域,受访者还来自三类机构:43%的商业银行,剩下的一半来自零售银行,一半来自于投资银行。相比较于其他类型的风险,三类机构的受访者均更加关注流动性风险和信用风险。同时,随着行业和地区的不同,他们赋予不同风险的重要性不同。
在所有地区和行业中,绝大部分银行已经或者很快在支持风险管理中投资大数据。五分之四的银行(81%)定期向高级管理人员提供关于银行风险状况的综合报告,另外有15%的银行打算在未来三年内也这样做。几乎所有银行都在致力于推动风险管理信息至银行高级决策者。但问题是他们是否获取到了正确的大数据工具并且真正有效。
仅仅过了十分之四的受访者创建风险概况时,拥有整合、操作和质疑大数据的能力。近半数的受访者在未来三年有计划在这些工具上进行投资。
先进的大数据工具的占比稍微有些低。例如,预测分析和数据可视化:41%的正在使用它们,44%的预计在未来三年内获取它们。
尽管如此,来自各大洲的绝大多数的零售银行、商业银行和投资银行都致力于利用大数据的力量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24