大数据 银行风险管理的“金钥匙”
数据越丰富则分析结果会越强大,大数据分析及相关分析数据迎来了黄金期。
随着数据量的增大以及数据多样性的增强,如何驾驭好这些数据让它更好的为决策服务、减少损失以及增加收益变得越来越重要。银行的业务经营依托于对风险的评估,以及对评估结果加以利用。这对当下的银行管理者提出更高的要求,包括分析获取可信的数据以及与公司员工分享得到的结果。
风险一直在增长
正如最近一些头条所指出的,风险的复杂性在增加,这种复杂性遍布于银行业的各个角落。银行业的集中度越来越高,更多的大型机构要协调不同层级和维度的关系,包括产品、流程、技术、组织架构以及合同等。金融创新带来了新的工具,不同市场之间的关联性增强也带来更频繁的跨界信息流动。由此带来的问题是,当风险出现的时候,市场的波动率会瞬时增加,从而造成会带来巨大流动性风险的“波动聚类(Volatility Clustering)”,就像2007—2009年的金融危机以及2001年的互联网泡沫破裂那样。
显然,银行业的风险非常广泛。“我们已经定义了13种系统性风险:网络风险、高频交易风险、对手风险、担保风险、流动性风险等等,同时我们也从如此多的大型银行的清算和结算活动中总结出一整类的关联性风险定义”。Mike Leibrock说,Mike是美国存款信托清算公司(DTCC)负责系统风险的副总裁(DTCC为所有的大型银行提供清结算服务)。
作为监管者,当然也包括他们监管的机构,还是像之前一样关注与识别和管理金融系统中的潜在风险,同时数据的管理实践也在不断变化。
大数据的潜力
银行在处理储存在他们数据库的数据方面都是专家。他们能够从把每天发生的数据整理成报告提供给中台和前台人员,供他们研究最新的市场趋势。
大数据是不同的。它数量巨大、形式多样并具有瞬时性,它可以从移动设备、社交应用、网页访问以及第三方获取,包括信用消费等方面的数据。它可以帮人们揭示那些连专家都不易察觉到的潜在消费习惯。大数据能够帮助银行从更细致的层面上发掘潜在的风险,可以细致到单一客户、产品以及投资组合水平,有些甚至可以更细致,达到信用审批以及定价层面。
为了了解更多关于大数据和银行风险管理的关系,EIU调查了6大洲55个国家的208位风险及合规管理上的高管,涵盖了零售银行(29%)、商业银行(43%)、投资银行(28%)。结果显示越来越多的银行界开始倾向于使用大数据,但他们仍然面临着一些挑战,主要是将分析结果应用在更高级的风险管理中,尤其是流动性风险和信用风险。
调查要求高管们为他们自己的机构打分,主要在控制以及缓解风险方面。结果显示了如下的一些相同点,包括:
基本的大数据工具来进行整理和获取那些有序及无序的数据(有35%高于平均分及7%低于平均分的高管选择了此项);更高级的大数据工具来进行预测和视觉化分析(有33%高于平均分及8%低于平均分的高管选择了此项)。
换句话说,那些表现更好的银行更喜欢使用多种不同的方法来进行风险分析,包括基础的和高级的分析工具。更进一步说,他们也更喜欢靠大量的数据解决风控问题。
支持风险管理的大数据投资
除了来自四个区域,受访者还来自三类机构:43%的商业银行,剩下的一半来自零售银行,一半来自于投资银行。相比较于其他类型的风险,三类机构的受访者均更加关注流动性风险和信用风险。同时,随着行业和地区的不同,他们赋予不同风险的重要性不同。
在所有地区和行业中,绝大部分银行已经或者很快在支持风险管理中投资大数据。五分之四的银行(81%)定期向高级管理人员提供关于银行风险状况的综合报告,另外有15%的银行打算在未来三年内也这样做。几乎所有银行都在致力于推动风险管理信息至银行高级决策者。但问题是他们是否获取到了正确的大数据工具并且真正有效。
仅仅过了十分之四的受访者创建风险概况时,拥有整合、操作和质疑大数据的能力。近半数的受访者在未来三年有计划在这些工具上进行投资。
先进的大数据工具的占比稍微有些低。例如,预测分析和数据可视化:41%的正在使用它们,44%的预计在未来三年内获取它们。
尽管如此,来自各大洲的绝大多数的零售银行、商业银行和投资银行都致力于利用大数据的力量。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28