大数据:支撑餐饮团购O2O的第三种模式
大数据:支撑餐饮团购的第三种模式
目前,餐饮团购主要包括美团、大众点评、百度糯米,但三者的内在驱动力却有所不同。
美团是典型的交易驱动模式,业务比较单一,利润主要来自于团购业务的交易佣金。由于起始阶段缺少其他业务带来的用户基础积累,美团正是通过自身强大的运营能力,获得竞争优势,从而占据团购行业的半壁江山,这既是美团的优势,也同样是美团的劣势,毕竟运营能力是可以被复制的。
大众点评是典型的信息驱动模式,依托其前期商家点评信息的积累,大众点评拓展了团购业务,且已经成为大众点评的主要利润来源。大众点评在点评信息方面的领先优势,一方面为其积累了商家资源,另一方面积累了用户群,从而为其团购业务的开展奠定了基础,但是点评的业务集中于一二线城市,这造成了其团购业务在运营能力上与美团的较大差距。
糯米网在百度收购后得到了资金和流量的支持,稳固了其在团购市场的位置。同时,百度借助自身的技术力量,为糯米开拓新的数据驱动模式。这次517吃货节可以看做是对这一模式的“大练兵”。
所谓数据驱动,就是依托百度对搜索数据、地理位置、用户浏览数据的综合分析,提炼出针对特定对象的有效数据,并以此辅助相关产品的运营和推广。在与餐饮O2O的业务结合中,百度想到从海量数据中找出某地用户,最喜欢的小吃,以及这些小吃在哪些餐馆做得最好,然后才是邀请这些餐馆参加百度糯米团。通过数据分析,找到大多数人的喜好,以此吸引更多用户参与,这是数据驱动模式的简单逻辑。
数据分析:简单背后的复杂过程
这个简单逻辑背后蕴藏的是复杂的数据运算,我们看到的结果是一个个美食餐馆top10榜单,但支撑这些简单结论的是庞杂的数据和复杂的运算。
比如要找出上海最会做剁椒鱼头的十家饭馆,要最终确定关键词“剁椒鱼头”的搜索目标是找到上海的餐馆,第一步要剔除搜索“剁椒鱼头”只是为了找到这道菜的做法,或者是了解这道菜的具体常识的其他需求;第二步是要确定搜索目标在上海;第三步是与具体制作剁椒鱼头,且活动用户好评的餐馆匹配起来;第四步是通过数据量排序,找出餐馆的顺序。
据了解,为了保证榜单的准确性,百度糯米还邀请了各地烹饪协会的专家参与评价,并最终确定榜单。这有效的避免了仅仅依靠大数据分析可能导致的偏差,毕竟机器跑出来的数据,可能有机械分析的局限性,难免遗漏那些“酒香不怕巷子深”的老店。
据百度内部人士介绍,这些更有意义的数据,不是来自高频词,而是从百度搜索中的“长尾词汇”挖掘分析得来。他们不像单一词汇那样容易成为高频搜索词,每天有几十上百万,甚至过千万的搜索量。他们是几个词,或者词组甚至是一个完整的句子,每天只有几千上万的搜索,但是却更具体也更有价值。
大数据分析的复杂主要是如何让网络更有智慧,让机器组成的神经网络能深度学习人的思维,总结出人群中的规律。为了提升这一能力,百度正在开展“百度大脑”项目,目前它具备了两三岁孩子的智力。但是百度相信:随着计算成本的飞速下降和计算能力的飞速提升,未来十几二十年,这样的大脑或许比人脑还要聪明。
显然,对于“剁椒鱼头做法”、“剁椒鱼头北京”、“剁椒鱼头哪里好吃”,这几个搜索用词所蕴含的目的和意义是不同的,通过对其数据相关性的存储和分析,可以让“百度大脑”学习到更多内容。在未来的某一天,它又会告诉我们更多我们想知道的东西,而这种结果的输出,无疑会越来越精确,且更有价值。
大数据格局:为你做决策
百度糯米通过517让我们体会到了百度大数据的威力——吃什么上哪吃,我来帮你做决策,你所需要的就是掏腰包。
百度的目标是要打造一个弱化人脑的智能数据平台,让数据分析帮助人来决策。这与百度做搜索引擎的出身有关。而且,搜索引擎是用户主动行为,通过收集用户主动需求的数据,百度可以知道用户想要什么,通过数据分析,百度就能够知道用户喜欢什么。久而久之,百度就可以参照众人的决策过程,去帮助有需求的用户进行决策或者是推荐用户喜欢的内容。
同样,阿里和腾讯也在做大数据方面的开发。稍加分析我们就会发现他们各具优势,阿里的数据与百度类似,而且也更精细,比较明确的体现了用户的购物需求。因此,阿里在处理大数据方面需要的是数据整合能力,把合适的数据分配到所需的卖家或买家手中,对智能性的要求不高,却有极大的商业价值。
而腾讯的数据来源主要是社交网络,数据量大且信息点分散,要深入挖掘出其中的有用数据需要一个更强大、更智能化的“大脑”,因此,要使其发挥出与百度目前的相同的智能水平,其数据挖掘能力必须高过百度,因而难度较大。不过,腾讯可以在个别领域有所突破,比如对用户所需资讯的匹配上,可以做些工作。
综合来看,百度借助搜索引擎,可以实现数据广度与分析智能化要求两个维度的最佳卡位。可以在较短时间内实现数据分析的稳步智能化,在商业拓展上虽然不会有阿里那样直接,但却会给用户更多惊艳的感受,本次517吃货节,就可以算作一例。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29