企业面对海量实时数据却不知所措
在人人喊着要“掘金”的大数据时代,企业的市场营销人员应该是最直接受益者。数据显示,83%的市场营销专业人士认为他们的品牌在数字化平台上应该更加活跃。然而,“梦想很丰满,现实很骨干”。虽然企业现在拥有的可供利用的数据量空前巨大,但是65%的市场营销专业人士都无法整合多个数据源—— 如社交媒体、博客、网站访问和搜索数据,这使他们无法确定采取什么行动。
来自TNS的最新研究显示,很多企业都未能利用企业的大数据信息来帮助自己做出明智的决策。TNS的“市场监测(Marketing Monitor)” 研究访问了遍布亚太区的2700多位市场营销专业人士。根据该研究,数据的总量之大、种类之多让人感觉雾里看花,难以从中获取有价值的洞察,使企业更难以利用数据来为自己服务,形成竞争优势。
在中国的企业正向数据驱动的数字化平台以及追踪研究系统投入更多资源,以帮助他们理解富有挑战性的线上世界。这些数据大量涌入市场营销部门,有三分之一(31%)的市场营销人员目前的职责包括管理实时数据。
然而,65%的中国市场营销人员承认,整合不同来源的数据相当困难。有这么多的可用数据,市场营销人员都知道他们应该能够实时做出决策,但很多人在整合传统和数字化数据的道路上艰难挣扎。
TNS中国首席执行官刘锡芸认为,面对如此大量的数据,许多企业都不知所措。“在线上平台方面,中国是世界上最先进的国家之一,其结果是产生了数量空前大的消费者行为数据。 好消息是,市场营销人员有丰富的信息可以加以利用。而不那么利好的消息是,要确定如何处理和分析这些数据以揭示对企业有价值的、隐藏在数据背后的洞察,并不总是一件容易的事情。”
由于对实时数据进行分析存在各种困难,许多市场营销人员都转而依赖传统的测量方法。根据TNS的研究,销售提升指标仍然是企业评估市场营销活动的成败的首选方法。尽管这些指标很重要,它们都是回顾性的,并不赋予企业能力来追踪消费者对市场营销活动的持续反应、对正在发生的问题采取行动,并做出改变以将他们的市场营销活动向更有利的方向推进的能力。
此外,现有的市场研究方法并不能帮助市场营销人员做出快速、明智的决策。根据我们在中国的调查,市场营销人员认为市场研究分析“可操作性不够”(64%)及“太慢”以致无法使用(61%)。
TNS品牌和沟通亚太区董事总经理Nitin Nishandar解释说:“从数据中提取有价值的洞察的困难意味着市场营销人员采用了一种”后视镜式“的方法,即只能在营销活动进行数周甚至数月之后才能了解其表现和品牌资产变动情况。实时数据需要给到实时价值——否则它就只是让人分心的噪音。”
在整合来自数字化渠道的洞察方面,一些国家领先于其他国家。尽管拥有一些世界上最先进的社交媒体平台,中国在数字化渠道洞察整合方面其实是滞后的,只有三分之一(30%)的市场营销人员在做市场营销决策时使用社交媒体监测。新加坡遥遥领先,55%的市场营销人员在进行社交媒体数据的监测。马来西亚紧随其后,有50%的市场营销人员在监测该数据,而印尼则有43%的市场营销人员进行社交媒体的数据监测。
各国家使用社交媒体监测来为决策提供依据的市场营销人员比例:
1.新加坡 – 55%
2.马来西亚 – 50%
3.泰国 – 46%
4.韩国 – 45%
5.印尼 – 43%
6.澳大利亚 – 43%
7.印度 – 42%
8.中国 - 30%
对有能力利用数字化数据的企业来说,对数字化数据的挖掘有潜力为企业开启通向未来机会之门。TNS的“市场监测(Marketing Monitor)” 研究的一个重要发现是,在亚洲,有三分之二(67%)的市场营销人员对传统市场研究不能提供预测性洞察这一事实感到沮丧。新的方法显示,数字化数据如能得到恰当的整合,不仅可以帮助营销人员做出实时决策,还可以预测品牌资产。
Nitin继续说道:“随着亚太区变革步伐的加快,我们需要开始使用数据来关注未来,而不是仅仅测量现状。追踪社交和搜索数据,以形成‘预测框架’的基础,能够比市场调研数据或销售数据早几个月提供洞察。这就使营销人员有能力及时预测品牌资产的变化,从而能够及时采取措施来应对这些变化。在这样一个多变的环境,能够有这样一幅‘望远镜’来眺望未来,对企业而言是一个非常宝贵的竞争优势。这种优势任何一个企业都不能忽视。”
数据分析咨询请扫描二维码
数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26数据分析师在今天的商业环境中扮演着至关重要的角色。他们需要应对各种复杂的数据分析任务和业务需求,这要求他们具备广泛的技能 ...
2024-11-26在当今快速变化的技术和市场环境中,数字化转型是企业利用数字技术全面重新设计和改造业务的重要过程。这一转型旨在通过整合云计 ...
2024-11-26数字化转型: 是企业在现代技术和市场环境不断变化的背景下,利用数字技术对其业务进行全面的重新设计和改造的过程。其核心目标是 ...
2024-11-26理论基础与高级学习 数学专业理论基础: 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程、实变函 ...
2024-11-26数字化转型:现代企业蜕变的引擎 数字化转型已然成为当今企业持续发展的关键支柱。这一过程并非简单的技术升级,更是涉及企业文 ...
2024-11-26# 数据科学与大数据技术专业学什么?就业前景与行业需求 **数字化转型:引领企业进步的关键** 数字化转型是现代企业发展的必经 ...
2024-11-26理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26