四个要素,轻松搞定企业大数据规划
成功的大数据规划聚焦于四个核心要素:应用场景、数据产品、分析模型和数据资产,企业着手实施大数据战略要着重考虑这四大方面,管理者需要在这四方面做好规划,才能给企业带来更好的业务价值。
首先是应用场景。
企业需要确定不同业务投入大数据的优先级,确定大数据的切入点。企业需要优先考虑业务的哪些方面投入大数据可以为企业提升绩效。常见的大数据应用场景,有业务运营监控、用户洞察与用户体验优化、精细化运营和营销、业务市场传播、经营分析等常见的方面。当然在人力资源、IT运维以及财务等方向也可以引入大数据。企业高管需要和各业务的整体负责人、数据专家一起开展研讨会,分析哪些业务投入大数据可以使得业务的绩效提升最为显著,从而确定不同业务投入大数据的优先级,找准大数据的切入点。数据能够在哪些领域实现业绩的大幅提高?数据能在哪些领域实现企业运营效率的提升?这些问题很重要,一开始就必须提出来。每个重要业务部门和职能部门都需要考虑这个问题,并展开相关的研讨。企业高管实施大数据战略的时候需要高度重视这一步。但国内很多企业往往忽略的这一方面,投入大数据往往不是以提升业绩导向,而是以学术导向,使得很多企业实施大数据却看不到数据对企业绩效提升,从而使得大数据战略流产。
第二方面是数据产品。
在确定了大数据的业务投入优先级后,我们需要考虑的是如何通过数据产品来帮助提升业务的绩效。为什么是“数据产品”而不是“数据工具”?这是因为“数据产品”比“数据工具”更加强调易用性和用户体验。数据和分析模型本身的输出可能会比较复杂,比较难理解,这样往往导致经理或者一线员工等数据用户不能理解,更称不上运用。所以,只有数据产品在业务具体的场景运用的时候,以非常简单易用的方式来呈现,才能让更多的数据用户使用。大数据魔镜就是这样一款“数据产品”。普通业务人员可以三分钟学会数据分析,并且使用内部数据共享功能,协同公司上下级共同决策。企业数据用户在实际运用大数据的时候,更关注的是大数据的产品在哪些方面可以直接帮忙提升绩效,不会太关注大数据这些产品背后的逻辑、分析模型等“黑洞”。如果我们在提供数据产品的时候需要数据用户理解很多“黑洞”,那么数据一定运用不起来,数据的价值就会大打折扣。比如,数据产品可以告诉营销人员,您这次合作的营销推广渠道有所带来的用户40%是作弊而来,我们把这些作弊渠道带过来的用户叫“假量”,数据产品不需要告诉营销人员“假量”是如何计算的,但知道结果和优化方向即可。或者数据产品可以直接告诉营销人员哪些产品和其他产品可以做交叉销售,如果这些产品实施交叉销售,可以进一步提高销售额。
第三方面是数据模型。
数据产品背后的“黑洞”是数据模型。数据的堆砌不会创造太多的业务价值,需要数据模型、数据挖掘的方法来实现海量数据的商业洞察。常见的模型如预测和分类。在预测方面,如通过高级的模型来预测哪些用户可能会付费,他们的特征是什么,经常在什么地方出没;通过数据模型来预测付费客户的数量,以提前发现考核期结束后付费客户数量和KPI的差距以及优化方向;通过预测模型来洞察用户的未来购买需求;在分类模型方面,我们可以通过分类模型结合大数据实现更准确更实时的用户细分;或者通过分类模型对不同价值的客户进行合理的分类,确定服务的优先级和服务内容。企业在制定大数据战略方向时,需要介入数据专家根据应用场景和数据产品的输出来选择模型以及优化模型,从而确定模型研发的方向和优先级。
第四方面是数据资产。
有了应用场景、数据产品和数据模型这三大方面,我们就能更清楚的知道为了实现这三大方面,我们需要哪些数据,什么数据是企业现在拥有,什么数据可以通过合作产生,什么数据需要外部整合,什么数据需要进行购买或者投资。有了前面这三大方面(应用场景、数据产品和数据模型)的规划,大数据的采集、整合、管理的策略便能比较容易理清头绪和相应的规划。当我们合理的整理企业所拥有的数据,并整合有利于业务发展的外部的数据,形成系统化的管理,才能很好的形成企业的数据资产。但在国内,最大的问题常常是各业务部门、各事业部以及职能部门的数据经常各自为政,数据存放在不同的数据库中,数据无法整合打通,企业内部形成各种孤岛,导致企业数据资产无法发挥整合效益,数据资产流失。要让企业的数据成为长期的数据资产,企业高管则需牵头规划,整合不同业务部门、不同事业部的数据,推动建设高数据质量的数据治理标准。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
4月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-17