热线电话:13121318867

登录
首页精彩阅读大数据如何精确定位营销
大数据如何精确定位营销
2015-11-04
收藏

大数据如何精确定位营销


大数据将是继云计算、物联网之后IT产业又一次颠覆性的技术变革。

电影《天下无贼》里有这样一句经典对白:“21世纪什么最贵?人才!”如今,选项可能还要加上一个:数据。

而这数据,已不是传统意义的一般数据,而是超大数据、海量数据,就是现在所谓的“大数据(Big Data)”。

如今大数据可谓是风起云涌,红红火火,俨然成为信息技术领域最时髦的词汇。IBM、微软、Oracle、SAP等IT巨鳄,像是寻找到了新的金矿,开始全力挖掘大数据,多方位推广大数据理念,而众多中小IT厂商也跟着蜂拥而至,以分得大数据市场一杯羹。

数据爆炸的冲击波

“大”字不仅意味着数据的数量庞大,还代表着数据种类繁多、结构复杂,变化的速度也极快。研究表明,大数据呈现三种特性:Volume(极多的数据量)、Velocity(极快的处理速度)、Variety(极繁的数据种类)。如今有许多企业已面临单日数据量以数十、数百TB(万亿字节)的速度增加,而近几年累加的总数据量也达到了PB(1000个TB)甚至EB(一百万个TB)等级,这样的数据量已让传统的数据库难以处理;而且企业数据增加的速度也越来越快,诸如移动化、社交网络的广泛应用,使得数据增加的速度比传统的企业应用程式来得快很多,一旦数据增生速度越快,数据处理、分析的速度也就得跟上;此外,数据更是呈现出多样性、复杂性的特征,一方面互联网不但产生文字资讯,同时也不断在产出与以往不同的数据:照片、视频、微博等,另一方面,IT遍及工作生活中的每个角落,各种各样的传感器、监控器也不断产生,各种机器资讯数据的形式日趋复杂、多样了,从结构化数据到非结构化数据不断转化。这就催生了大数据技术的强烈需求。

今天,从搜索引擎、社交网络的普及到人手一机的智能移动设备,全球互联网上的信息总量正以每年30%-50% 的增速不断暴涨,包括每天Facebook上分享的几亿条内容,每日15 TB的Twitter信息,每天淘宝上数十亿条店铺、商品浏览记录及上亿的成交、收藏记录以及3000多万条传感器资讯,等等。市场研究机构IDC的研究结果显示,去年全球创造的信息数量达到1800EB,并且还以每年50%的速度高速增长,到2020年,全球每年产生的数字信息将达到35ZB(1ZB=1024EB)。据IDC统计,2011年全球所产生的数据总量是1.8ZB,如果把这些数据刻录到CD碟片中,这些碟片可环绕地球30圈。

可以说,目前大部分企业经营决策面临的最大挑战不是缺少数据,而是数据太多,面对这些只是静态、孤立、无多大参考意义的“初级品”的信息数据,企业信息部门如何通过系统功能来有效利用和整合,发掘有价值的数据,给公司营销管理提供决策支持,已成为摆在企业信息部门及其他管理部门面前的难题。

而浩如烟海的客户及市场、销售和服务信息,如果没有一个具有高度商业智能的数据分析和处理系统是不可想像的。而用户想要从庞大海量的数据库中提取对自己有用的信息,就离不开大数据分析技术和工具。事实证明,传统基于过往事实的商业管理系统如BI(智能分析系统)、CRM(客户管理系统)也能够为企业带来价值,但是今天一个优秀的大数据系统更能将数据挖掘技术与现有技术很好地结合起来,将特殊领域的商业逻辑与数据仓库技术集成起来,找出对未来企业战略具有影响的因素,使数据挖掘的分析效果和效益尽可能达到峰值,让企业营销管理能“运筹帷幄,决胜千里”。

像Facebook、Twitter这样面临数据量大爆炸的国际社交网络公司,已开始用分布式程序系统基础架构、非关系型的数据库等新兴大数据技术来解决海量市场信息问题,并取得了成效。国内最大电子商务公司阿里巴巴也在利用大数据技术提供具体服务,如阿里信用贷款与淘宝数据魔方。以淘宝数据魔方为例,利用淘宝平台上的大数据应用方案,商家可以了解淘宝平台上的行业宏观情况、自己品牌的销售情况、市场排名、消费者行为情况等,并可以据此作出经营决策。

重构精确营销模式

大数据时代之前,企业多从哪些平台提取数据、利用哪些营销数据?一般是CRM或BI系统中的顾客信息、市场促销、广告活动、展览等结构化数据以及企业官网一些数据。但这些信息只能达到企业正常营销管理需求的10%的量能,并不足够给出一个重要洞察和发现规律。

而其他85%的数据,诸如社交媒体数据、邮件数据、地理位置、音视频等这类不断增加的信息数据等等,更多以图片、视频等方式存在,几年前可能被置之度外,不会被运用,而今大数据能进一步提高算法和机器分析的作用,这类数据在竞争激烈的市场日显宝贵、作用突出。

包括沃尔玛、家乐福、麦当劳等知名企业的一些主要门店均安装了搜集运营数据的装置,用于跟踪客户互动、店内客流和预订情况,研究人员可以对菜单变化、餐厅设计以及顾客意见等是如何对物流和销售额的影响进行建模。这些企业可将这些数据与交易记录结合起来,并利用大数据工具展开分析,从而在销售哪些商品、如何摆放货品以及何时调整售价上给出意见,此类方法已经帮助这些领先零售企业减少了17%的存货,同时增加了高利润率自有品牌商品的比例。

如果说以前的一些CRM系统,只能促使分析报告回答“发生了什么事”,现在一个优秀的大数据系统已可以被用来回答“为什么会发生这种事”,而且一些关联数据库还可以预言“将要发生什么事”,最终发展为非常活跃的数据仓库,从而能判断“用户想要什么事发生”。

比如当一个顾客进入店铺后,一个零售商利用大数据技术搜索他们的数据库,发现这位顾客是其希望留住的有价值顾客,之后他们通过将其过去的购物历史和Facebook主页获得的这位顾客的信息综合起来,来了解需要花多少钱来留住他,从而确定所售卖物品的合适价格和零售商可以退让的利润空间,并最终针对这位顾客给出最佳的优惠策略和个性化的沟通方式。

如今在美国的沃尔玛大卖场,当收银员扫描完顾客所选购的商品后,POS机上会显示出一些附加信息,然后售货员会友好提醒顾客:“我们商场刚进两三种配酒佳料,并正在促销,位于D5货架上,您要购买吗?”这时,顾客也许会惊讶地说:“啊,谢谢你,我正想要,刚才一直没找到,那我现在再去买。”

这就是沃尔玛在大数据系统支持下实现的“顾问式营销”的一个实例。因为计算机系统早就算计好了,如果顾客的购物车中有不少啤酒、红酒和沙拉,则有80%的可能需要买配酒小菜、作料了。而提供这一决策分析支持的就是其位于美国一个庞大的、通过卫星与全球所有卖场实时连通的企业级数据仓库

企业要为营销准备什么

虽然大数据展示了非凡的前景和巨大作用,不过,大数据营销仍面临不少问题与挑战。首先面临的是技术难题,毕竟大数据技术尚处于活跃前期,各方面技术并不太扎实,各项工具需要进一步完善。但实际情况是,真正启动大数据营销,企业面临的不仅仅是技术和工具问题,更重要的是要转变经营思维和组织架构,来真正地挖掘那座数据金矿。

大数据的资源极大繁杂丰富,如果企业没有明确的目标,就算没有走入迷途至少也会觉得非常迷茫。因此,首先要确定企业运用大数据的短中期目标,定义企业的价值数据标准,之后再使用那些能够解决特定领域问题的工具。逐步推广,步步为营,不要把理想定得太高,否则失望会越大。当然,企业运用大数据为营销管理服务之前,技术团队要到位是基础。企业的营销团队要能够非常自如地玩转数据。

企业启动大数据营销一个最重要的挑战,是数据的碎片化,各自为政。许多企业中,数据都散落在互不连通的数据库中,而且相应的数据技术也都存在于不同部门中,如何将这些孤立错位的数据库打通、互联,并且实现技术共享,才是能够最大化大数据价值的关键。营销者当留意的是,数据策略要成功提升网络营销成效,要诀在于无缝对接网络营销的每一步骤, 从数据收集、到数据挖掘、应用、提取洞悉、报表等。

要做好大数据的营销运用,其一,要有较强的整合数据的能力,整合来自于企业各种不同的数据源、各种不同结构的数据;其二,要有研究探索数据背后价值的能力,未来营销成功的关键将取决于如何在大数据库中挖掘更丰富的营销价值;其三,探索出来之后给予精确行动的营销指导纲领,同时通过此纲领进行精确快速实时性行动。

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询