大数据:未来核心竞争力
作为新一代信息革命最热门的技术,大数据掀起了新一波IT投资和信息化建设的浪潮。越来越多的企业开始思考、探索和尝试用大数据的技术和手段,来提升营销、运营和生产的效率及效能。
大数据应用的关键,在于先进的创新模式。在保护用户隐私和数据安全情况下,要尽量让数据流动起来,如此才能创造高效的信息社会,让数据被使用并发挥价值,甚至还能二次发挥价值。
大数据技术更多的是处理企业非结构化的数据、非标准化的数据和企业Web的数据,以实时数据处理能力满足企业对客户的需求。现在,根据用户的行为轨迹实时预测该用户当前的偏好和需求,并实时将个性化的关联信息展示到用户面前,已成为大数据营销制胜之关键技术手段。
中国大数据市场还处在初级阶段,但增速迅猛,应用也很广泛,不管是云计算、物联网、智慧城市还是移动互联网都要与大数据扯上关系。但如何使大数据技术和应用落地?大数据管理平台是一个解决方案。大数据管理平台相当于建一个大数据工厂,应用是数据管理和数据工厂里的流水线,它们被赋予大数据计算的能力。做一个形象的比喻就是,不需要每个企业都去挖井才能喝水,大数据专业公司挖了一个大井,把水提供给企业。
很多人对大数据管理平台的应用心有余悸,认为大数据应用会暴露用户的隐私,其实这种担心是多余的,这个问题现在就能够解决。那些涉及隐私的数据,比如一个人的手机号、身份证号、地址等,都可以通过数据安全与层层数据加工隐藏起来。
目前国内很多地区都建立了大数据产业园区,但最大的问题是技术人才短缺。现在做大数据技术的公司很多,但做基础技术的顶尖人才很少。另外一个问题,就是做大数据平台的人很多,但平台上的内容却空洞无物,缺少真正实用的大数据应用。
实际上,大数据产业的下一个黄金十年,将是企业级的大数据基础技术开发。中国有几千万家的企业,这个需求非常大。然而大数据基础技术的开发,既要通用性非常好,又要可扩展性非常好,要做好非常不易,而且大数据基础技术赚钱慢,因而只有务实的心态,才能做好大数据产业。
未来,大数据产业会形成一个生态系统,在这个系统里有基础的技术,有大数据分析企业,有大数据应用企业,应用的行业分金融、营销、教育等,这是个非常大的产业。此外,还有大数据市场,即包括数据交换和数据交易的市场。目前贵阳已成立了一个大数据交易所,这是一个起点,有很多东西都亟待完善,例如数据定价、标准的制定等。
可以预见,大数据市场的成熟不是短期的,它可能在未来的5年甚至10年之后,才能形成成熟的数据交易和数据交换市场,但在短期内,企业级的大数据应用会蓬勃发展,目前很多大企业已经先行了,他们意识到数据是重要的资产,认为能够把客户数据承载下来,并管理好,将是下个10至20年企业的核心竞争力!
数据分析咨询请扫描二维码
数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26《Python数据分析极简入门》 第2节 8-1 Pandas 数据重塑 - 数据变形 数据重塑(Reshaping) 数据重塑,顾名思义就是给数据做各种变 ...
2024-11-26统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22